Econometric Models for Fractional Response Variables in the Presence of Sample Selectivity and Multiple Dependent Variables

存在样本选择性和多个因变量的情况下分数响应变量的计量经济学模型

基本信息

项目摘要

Fractional response variables are variables taking values in the [0,1]-interval. A specific example of a fractional response variable is the share of exports in total sales. However, not only true fractions in the literal sense will be considered as fractional response variables, but also other variables which are naturally restricted to the [0,1]-interval, e.g., the perceived probability that a certain event (like job loss) occurs. Fractional response variables appear quite often as dependent variables in applied economic research. For the econometric analysis of such variables, fractional logit and probit models have been proposed and applied. This project has four objectives. First, a sample selection model for fractional response variables shall be developed. Non-random sample selectivity often occurs in empirical research and leads to biased and inconsistent estimates of the parameters of interest when sample selectivity is not properly taken into account. Since a sample selection model has not been developed so far for fractional response variables, this gap shall be filled with this project. The second objective is to apply the sample selection model to relevant economic problems, in order to show the gains from an application of the proposed model in empirical practice. The third objective is to develop a multivariate fractional response model. Most models involving fractional response variables are univariate models in the sense that they consider a single fractional response variable only. This project aims at extending these univariate models to multivariate settings, i.e., to consider multiple fractional response variables. The main reason for using multivariate models is that efficiency gains can be realized from a joint modeling approach, i.e., estimated standard errors can be reduced by using a multivariate estimation approach. The fourth and final objective is to apply the multivariate fractional response model to relevant economic problems, again in order to show the gains from an application of this model in empirical practice.
分数响应变量是取值于[0,1]区间的变量。分数响应变量的一个具体例子是出口在总销售额中的份额。然而,不仅字面意义上的真实分数将被视为分数响应变量,而且自然被限制在[0,1]区间内的其他变量也将被视为分数响应变量,例如,感知到的某一事件(如失业)发生的概率。在应用经济学研究中,分数阶响应变量经常作为因变量出现。为了对这些变量进行计量分析,人们提出并应用了分数Logit模型和Probit模型。这个项目有四个目标。首先,应建立分数响应变量的样本选择模型。非随机样本选择性经常出现在实证研究中,当没有适当考虑样本选择性时,会导致对感兴趣的参数的估计有偏差和不一致。由于到目前为止还没有开发出分数响应变量的样本选择模型,这个项目将填补这一空白。第二个目标是将样本选择模型应用于相关的经济问题,以展示所提出的模型在实证实践中的应用收益。第三个目标是建立一个多元分数响应模型。大多数涉及分数响应变量的模型都是单变量模型,因为它们只考虑单个分数响应变量。这个项目的目的是将这些单变量模型扩展到多变量环境,即考虑多个分数响应变量。使用多变量模型的主要原因是可以通过联合建模方法实现效率收益,即通过使用多变量估计方法来减小估计标准误差。第四个也是最后一个目标是将多元分数响应模型应用于相关的经济问题,以显示在实证实践中应用该模型的收益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jörg Schwiebert其他文献

Professor Dr. Jörg Schwiebert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fractional dynamic models for MRI to probe tissue microstructure
MRI 探测组织微观结构的分数动态模型
  • 批准号:
    DP190101889
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Stochastic models for increments of EEG recordings using heavy-tailed and fractional diffusions
使用重尾和分数扩散的脑电图记录增量的随机模型
  • 批准号:
    2275322
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
A unifying framework for generalised distributed-order fractional models
广义分布式阶分数模型的统一框架
  • 批准号:
    DP180103858
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: Multi-Scale Modeling of Biological Gels by Coupling Langevin Equations and Fractional Viscoelastic Constitutive Models
职业:通过耦合朗之万方程和分数粘弹性本构模型对生物凝胶进行多尺度建模
  • 批准号:
    1751339
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
  • 批准号:
    1620194
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Additive fractional models for large random fields applied to high-frequency financial data
应用于高频金融数据的大随机场的加性分数模型
  • 批准号:
    299304090
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Diffusion-tensor imaging for stroke outcome prediction: fractional anisotropy prediction models
用于中风结果预测的扩散张量成像:分数各向异性预测模型
  • 批准号:
    25282168
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tracking of Human Motion by Combining Recursive Bayesian Estimation Methods with Fractional Order / Variable Order models
通过将递归贝叶斯估计方法与分数阶/变阶模型相结合来跟踪人体运动
  • 批准号:
    162182751
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fractional Integration, Power Laws and Econometric Models: Some Methodological and Theoretical Developments
分数阶积分、幂律和计量经济模型:一些方法论和理论的发展
  • 批准号:
    DP0452717
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Fractional Cointegration, Tapering and Estimation of Misspecified Models in Long Memory Time Series
长记忆时间序列中错误指定模型的分数协整、逐渐减少和估计
  • 批准号:
    0306726
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了