Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
基本信息
- 批准号:1620194
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project proposes to develop a novel mathematical modeling of micro- and nano-fluidics, which intersects engineering, biochemistry, nanotechnology, and biotechnology. The study of micro-and nano-fluidics has great potential to revolutionize the methods in biological and chemical applications, which has wide applications to the design of systems in which low volumes of fluids are processed to achieve multiplexing, automation, and high-throughput screening. Micro- and nano-fluidics is used widely in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. The project will also provide advanced interdisciplinary training to graduate and undergraduate students. All of these activities will have broad and long-lasting impacts and contribute directly to the intellectual infrastructure of the nation.Nonlocal models such as fractional partial differential equations (FPDEs), fractional Laplacian, and peridynamics are emerging as powerful tools for modeling challenging phenomena including anomalous transport and long-range time memory or spatial interactions in a wide range of fields such as biology, physics, chemistry, finance, engineering, and solute transport in groundwater. These models provide more appropriate description of many important problems in applications than integer-order PDE models do. Two of the main reasons that nonlocal models have not been used extensively so far are as follows: (1) They generate numerical schemes with dense matrices and solutions with strongly local behavior, which are significantly more expensive to solve numerically than traditional integer-order PDE models. A naive simulation of a three-dimensional linear problem with a moderate number of grid points may take state of the art supercomputers hundreds of years to finish and so deemed unrealistic. (2) Nonlocal models introduce mathematical difficulties, which were not encountered in the context of integer-order PDEs. It is proposed to effectively address both points at this juncture. The fast numerical methods proposed herein will provide significant computational benefits for nonlocal models, and will facilitate their applications. Preliminary numerical experiments of a simple three-dimensional fractional PDE showed that the proposed method reduced the CPU time from 2 months and 25 days by a traditional method to 5.74 seconds and reduced storage significantly. The proposed mathematical and numerical analysis will provide a solid theoretical foundation for nonlocal models and related numerical approximations. The fast and accurate numerical methods and rigorous mathematical analysis results will be applied in the development of a novel mathematical modeling of micro- and nano-fluidics. The resulting mathematical model will be utilized in the study of micro- and nano-fluidics.
该项目建议开发一种新的微和纳米流体数学模型,它与工程,生物化学,纳米技术和生物技术交叉。微纳流控技术的研究具有极大的潜力,可以彻底改变生物和化学应用中的方法,这在设计系统中具有广泛的应用,在该系统中,处理小体积的流体以实现多路复用、自动化和高通量筛选。微流体和纳米流体广泛用于喷墨打印头、DNA芯片、芯片实验室技术、微推进和微热技术的开发。该项目还将为研究生和本科生提供先进的跨学科培训。所有这些活动都将产生广泛而持久的影响,并直接为国家的知识基础设施做出贡献。非局部模型,如分数阶偏微分方程(FPDE),分数阶拉普拉斯算子和周波函数,正在成为模拟具有挑战性的现象的强大工具,包括生物学,物理学,化学,金融、工程和地下水中的溶质运移。这些模型比整数阶偏微分方程模型更能描述实际应用中的许多重要问题。非局部模型至今没有得到广泛应用的两个主要原因是:(1)它们产生的数值格式具有稠密矩阵和强局部行为的解,这比传统的整数阶PDE模型的数值求解成本要高得多。用中等数量的网格点对三维线性问题进行简单的模拟可能需要最先进的超级计算机数百年才能完成,因此被认为是不现实的。(2)非局部模型引入了数学上的困难,这在整数阶偏微分方程的上下文中没有遇到。现建议在这一关头有效地处理这两点。本文提出的快速数值方法将为非局部模型提供显着的计算优势,并将促进其应用。对一个简单的三维分数阶偏微分方程的初步数值实验表明,该方法将传统方法的CPU时间从2个月零25天减少到5.74秒,并显著减少了存储量。所提出的数学和数值分析将为非局部模型和相关的数值近似提供坚实的理论基础。快速准确的数值计算方法和严格的数学分析结果将应用于微纳米流体的新的数学模型的发展。由此产生的数学模型将用于微和纳米流体的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Wang其他文献
Uplink Performance Analysis in Multi-tier Heterogeneous Cellular Networks with Power Control and Biased User Association
具有功率控制和偏置用户关联的多层异构蜂窝网络中的上行链路性能分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.1
- 作者:
Han Hu;Hong Wang;Qi Zhu;Ziyu Pan - 通讯作者:
Ziyu Pan
On STAR-RIS-Aided NOMA With Multi-Group Detection
具有多组检测的 STAR-RIS 辅助 NOMA
- DOI:
10.1109/lwc.2023.3303414 - 发表时间:
2023 - 期刊:
- 影响因子:6.3
- 作者:
Shen Fu;Hong Wang;Haitao Zhao;Haochun Ma - 通讯作者:
Haochun Ma
Control of networked traffic flow distribution: a stochastic distribution system perspective
网络流量分配的控制:随机分配系统的角度
- DOI:
10.1145/3109761.3158411 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hong Wang;H. M. A. Aziz;S. Young;Sagar V. Patil - 通讯作者:
Sagar V. Patil
Composite robust H1 control for uncertain stochastic nonlinear systems with state delay via disturbance observer
基于扰动观测器的状态延迟不确定随机非线性系统的复合鲁棒H1控制
- DOI:
- 发表时间:
- 期刊:
- 影响因子:6.8
- 作者:
Yunlong Liu;Hong Wang;Lei Guo - 通讯作者:
Lei Guo
A Novel Optical See-Through Head-Mounted Display with Occlusion and Intensity Matching Support
具有遮挡和强度匹配支持的新型光学透视头戴式显示器
- DOI:
10.1007/978-3-540-73011-8_8 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ya Zhou;Jintao Ma;Q. Hao;Hong Wang;Xian - 通讯作者:
Xian
Hong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Wang', 18)}}的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:
1954422 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:
2000988 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:
1664708 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:
1216923 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
ARC Future Fellowships
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant














{{item.name}}会员




