Shock Wave Detection and 64 Times Resolution Flow Simulation based on Image-Processing/Fluid-Dynamics

基于图像处理/流体动力学的冲击波检测和 64 倍分辨率流动模拟

基本信息

  • 批准号:
    19K04834
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

画像において輝度が突如大きく変化する個所を「エッジ」と呼ぶ.Canny法は代表的なエッジ検出技術である.本研究ではこのエッジと,流体力学において物理量が急激に変化する「衝撃波」との類似性に着目している.衝撃波は,空気抵抗や騒音の原因となる一方で,結石破砕治療に利用される側面を持つ.つまり有害にも有益にもなる.しかし衝撃波は一般に肉眼では認識できず,数値流体力学で正確にシミュレーションする事も難しい.そこで画像処理におけるエッジと同様,得られた解が空間的に不連続な変化を起こす個所を衝撃波として抽出し,これを新たな数値流体計算法に活用する.具体的には輝度の代わりに圧力もしくは密度を利用する.これらは衝撃波において大きく変化する事が知られており,その関係はランキン・ユゴニオ条件として知られている.こうして衝撃波を画像処理技術と流体力学理論を用いて検知し,これを数値流体力学における計算法に組み込む事で,簡便・精密・安定に衝撃波を扱う計算法を構築する事が本研究の目的である.従来の衝撃波計算においては,実際には衝撃波でない場所でも精度を犠牲にして計算を安定化させていた.本計算法が確立すれば,高い精度を維持したまま衝撃波計算が可能となり,従来比64倍の解像度が期待される.2019-21年度は,衝撃波検知法を完全気体の空気だけでなく混相流や電磁流体へ拡張し改良を行なった.これにより,衝撃波を含む混相流の計算をより低コストで行う事ができる.しかしながら新型コロナの影響で充分な研究時間や出張の機会を確保できなかった.2021年度は,本研究の本丸である「衝撃波を含む流体計算法」と「画像処理を応用した衝撃波検知法」の組み合わせにいよいよ着手した.そして予備的な数値実験結果を得て学会発表を行なった.2022年度はその過程で,混相流の効率的な計算法等について査読付き論文を発表した.
The image is bright and bright. The Canny method represents the detection technology. In this paper, we focus on the similarity of shock waves and physical quantities in fluid dynamics. Shock wave, air resistance, sound and other reasons, stone breaking treatment, use of the bottom surface.つまり有害にも有益にもなる. Shock waves are generally recognized by the naked eye, and numerical fluid dynamics are difficult to correct. A new method of calculating fluid flow is proposed. Specific brightness generation, pressure generation, density utilization. The shock wave is a big shock wave, and the event is known. The relationship between the shock wave and the event is known. The purpose of this study is to establish a simple, accurate and stable computational method for shock wave imaging. In the calculation of incoming shock wave, the accuracy of shock wave calculation is reduced and the calculation is stabilized. This calculation method has been established, high accuracy is maintained, shock wave calculation is possible, and the resolution is expected to be 64 times higher than that in 2019 -21. The shock wave calculation method is complete and the air distribution of mixed phase flow and electromagnetic fluid is improved. The calculation of shock wave containing mixed phase flow In 2021, the author of this study started the research on the combination of shock wave calculation method and shock wave detection method. In 2022, the calculation method of mixed phase flow efficiency was developed.

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical and experimental study on the behavior of vortex rings generated by shock?bubble interaction
激波-气泡相互作用产生涡环行为的数值与实验研究
  • DOI:
    10.1063/5.0083596
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kitamura K.;Yue Z.;Fujimoto T.;Asai H.;Kubota A.;Myokan M.;Ichihara D.;Sasoh A.
  • 通讯作者:
    Sasoh A.
SLAU2-MHD for Low Mach Magnetohydrodynamics (MHD) Simulations.
SLAU2-MHD 用于低马赫磁流体动力学 (MHD) 模拟。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mamashita;T.;Kitamura;K.;and Minoshima;T..
  • 通讯作者:
    T..
Three-Dimensional Hypersonic Aeroheating Computations Associated with Cross-Flow Jet Interactions
与错流射流相互作用相关的三维高超声速气动加热计算
SLAU2-HLLD numerical flux with wiggle-sensor for stable low mach Magnetohydrodynamics simulations
  • DOI:
    10.1016/j.compfluid.2021.105165
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Tomohiro Mamashita;K. Kitamura;T. Minoshima
  • 通讯作者:
    Tomohiro Mamashita;K. Kitamura;T. Minoshima
SLAU2 applied to two-dimensional, ideal magnetohydrodynamics simulations
SLAU2 应用于二维理想磁流体动力学模拟
  • DOI:
    10.1016/j.compfluid.2020.104635
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kitamura Keiichi;Mamashita Tomohiro;Ryu Dongsu
  • 通讯作者:
    Ryu Dongsu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

北村 圭一其他文献

C-2-9 業務用移動通信におけるプリディストーション回路の歪補償特性
C-2-9 商用移动通信中预失真电路的失真补偿特性
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北村 圭一;近藤 光治
  • 通讯作者:
    近藤 光治

北村 圭一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('北村 圭一', 18)}}的其他基金

解像度5次精度超の効率的な2次精度型圧縮性流体計算法と複雑流体物理への応用
分辨率超过五阶精度的高效二阶精密可压缩流体计算方法及其在复杂流体物理中的应用
  • 批准号:
    23K26295
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
解像度5次精度超の効率的な2次精度型圧縮性流体計算法と複雑流体物理への応用
分辨率超过五阶精度的高效二阶精度可压缩流体计算方法及其在复杂流体物理中的应用
  • 批准号:
    23H01601
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
画像処理と流体力学の融合による衝撃波検知と高精度実用乱流計算
图像处理与流体动力学相结合的冲击波检测和高精度实用湍流计算
  • 批准号:
    21KK0258
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
数値的アプローチによる衝撃波安定・全速度流体解析手法の研究
冲击波稳定性及全速流体数值分析方法研究
  • 批准号:
    11J08498
  • 财政年份:
    2011
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

数値流体力学解析による人工心肺回路の標準化
使用计算流体动力学分析对心肺旁路回路进行标准化
  • 批准号:
    24K15848
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
水泳運動中の人体に生じる抵抗力の増大メカニズムの解明と数値流体力学への応用
阐明游泳运动时人体产生阻力增加的机制及其在计算流体力学中的应用
  • 批准号:
    23K10631
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数値流体力学的解析の導入による先天性気管狭窄症の手術水準向上
引入计算流体动力学分析提高先天性气管狭窄手术水平
  • 批准号:
    23K08307
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数値流体力学を利用した網膜静脈閉塞リスク評価
使用计算流体动力学评估视网膜静脉阻塞风险
  • 批准号:
    22K09815
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
顕微鏡解析と数値流体力学による水頭症の原因解明に向けたモンロー孔付近の流体解析
使用显微分析和计算流体动力学对门罗孔附近的流体进行分析以阐明脑积水的原因
  • 批准号:
    22K12780
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
脳動脈瘤再発予防に向けた数値流体力学解析によるステント併用コイル塞栓術の開発
利用计算流体动力学分析开发线圈栓塞结合支架以预防脑动脉瘤复发
  • 批准号:
    21K09120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
血液ポンプの溶血低減のための数値流体力学解析による形状最適化方法の確立
利用计算流体动力学分析建立减少血泵溶血的形状优化方法
  • 批准号:
    21K12769
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
コンピューター数値流体力学解析および動的造影MRIによる脳動脈瘤の壁性状の検討
使用计算机计算流体动力学分析和动态对比增强 MRI 检查脑动脉瘤的壁特性
  • 批准号:
    21K09097
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数値流体力学によるシミュレーションを用いたオーダーメイド動注化学療法の開発
使用计算流体动力学模拟开发定制动脉内化疗
  • 批准号:
    19K19240
  • 财政年份:
    2019
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多繊毛配置と流体輸送効率の関係の解明 数値流体力学的アプローチ
阐明多纤毛排列与流体运输效率之间的关系:计算流体动力学方法
  • 批准号:
    17H06788
  • 财政年份:
    2017
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了