Water-induced damage mechanisms of cyclic loaded high-performance concretes

循环荷载高性能混凝土的水致损伤机制

基本信息

项目摘要

The expansion of offshore wind energy systems is causing the number of concrete structures which experience loading cycles in excess of several 10^8 while constantly interacting with water to increase. During the first funding period (FP I) a water-induced “saturation damage” (occurring during load decrease) was unmistakeably distinguished from an atmospheric fatigue damage mechanism (above average load) by acoustic emission measurements (Lohaus). Additionally, it was demonstrated by way of NMR-investigations that damage effects correlate with water relocations within the nano-porous system of the hardened cement paste (Haist). Own numerical developments also clearly demonstrated the difference in the degradation behaviour between dry and saturated concrete in the meantime (Wriggers/Aldakheel).In spite of these advancements a detailed understanding of the underlying mechanisms is still lacking. The effects to be described occur at such minute scales that further investigations in the experimental and numerical portions are being more strongly oriented towards measurement of nanoscopic effects. The modelling of failure mechanisms must be further refined in order to account for the complex properties of the microstructure, such as the creation, the growth and the coalescence of pores.The objective of FP II is to quantify, better comprehend, describe and model the mechanism of “saturation damaging” during fatigue failure of concrete, building on the modelling approaches developed during FP I. For this purpose, the different types of fatigue damage in “dry” and “moist” conditions must first be differentiated from one another using the analysis of acoustic emission occurrences. Further the influencing parameters such as loading frequency or damage existing prior to loading must be quantified. In order to better understand the mechanisms at work, water redistribution processes within the pore system on the nanoscopic and microscopic scales will be investigated and resulting microstructural damages and changes in the mechanical properties of the hardened cement paste and mortar will be detected, which may then be translated into a simplified analytical engineering model. Finally, damage processes occurring at nanoscopic scale are to be modelled at the microstructural level by way of adequate homogenisation techniques. This model is intended also to portray the damage evolution with help of cycle-jump-techniques, so that finally the water-induced fatigue damage of concrete may be completely numerically depicted and predicted.With the developed methods the description of the degradation behaviour of fatigue loaded high-performance concrete under water on the basis of microstructural parameters will become possible for the first time in the Experimental-Virtual-Lab.
海上风能系统的扩展导致混凝土结构的数量增加,这些结构在不断与水相互作用的同时经历超过几十个10^8的荷载循环。在第一个资助期间(FP I),通过声发射测量(Lohaus)将水引起的“饱和损伤”(在载荷降低期间发生)与大气疲劳损伤机制(高于平均载荷)明确区分开来。此外,它被证明通过核磁共振研究的方式,损害效应与硬化水泥浆(Haist)的纳米多孔系统内的水迁移。自己的数值发展也清楚地表明了干燥和饱和混凝土之间的退化行为的差异,同时(Wriggers/Aldakheel)。尽管有这些进步,但仍然缺乏对潜在机制的详细了解。要描述的效果发生在这样的微小尺度,在实验和数值部分的进一步调查正在更强烈地面向纳米效应的测量。破坏机制的建模必须进一步完善,以解释微观结构的复杂特性,如孔隙的产生、生长和合并。FP II的目标是量化、更好地理解、描述和建模混凝土疲劳破坏过程中的“饱和破坏”机制,建立在FP I期间开发的建模方法基础上。为此,必须首先使用声发射事件的分析来区分“干燥”和“潮湿”条件下的不同类型的疲劳损伤。此外,必须量化影响参数,如加载频率或加载前存在的损伤。为了更好地理解工作机制,将研究纳米和微观尺度上孔隙系统内的水再分布过程,并检测硬化水泥浆和砂浆的微观结构损伤和机械性能变化,然后将其转化为简化的分析工程模型。最后,在纳米尺度上发生的损伤过程将在微观结构水平上通过适当的均匀化技术进行建模。该模型还打算描绘的损伤演化的帮助下,循环跳跃技术,使最终的混凝土的水致疲劳损伤可以完全数值描述和predicted.With开发的方法的疲劳加载的高性能混凝土在水中的微观结构参数的基础上的退化行为的描述将成为可能的第一次在实验虚拟实验室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Haist其他文献

Professor Dr.-Ing. Michael Haist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Haist', 18)}}的其他基金

Component additive approach to predict cement paste rheology considering mineral and particle heterogeneity on different scales (CONCERT)
考虑不同尺度的矿物和颗粒异质性的组分添加剂方法来预测水泥浆体流变性(音乐会)
  • 批准号:
    387096404
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Micromechanical mechanisms of the time dependent deformation behavior of early-age concrete
早期混凝土随时间变化的变形行为的微观力学机制
  • 批准号:
    310950436
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Open channel flow behaviour of concrete in the presence of obstacles and mechanisms of flow blockage (OCF-Blockage)
存在障碍物时混凝土的明渠流动行为和流动阻塞(OCF 阻塞)机制
  • 批准号:
    452024049
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Component additive approach to predict Cement paste Rheology considering Secondary Cementitious Materials and their special effect on thixotropy and concrete de-airing behaviour
考虑二次胶凝材料及其对触变性和混凝土脱气行为的特殊影响的组分添加剂方法预测水泥浆流变性
  • 批准号:
    452020613
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
cGAS-STING激活IFN1反应介导噪声性耳蜗损伤机制研究
  • 批准号:
    82371152
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于NLRP3/IL-1β信号探讨α7nAChR介导巨噬细胞—心肌细胞互作在Aβ诱导房颤心房重构中的作用及机制研究
  • 批准号:
    82300356
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
脂肪酸合成通过GDF15/IRS2介导胰岛素抵抗促进血管内皮细胞活化导致脓毒症肺损伤的机制研究
  • 批准号:
    82372203
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
NRF2/MFN2/ERS信号异常促进ADSCs衰老和肥大型肥胖皮下脂肪组织胰岛素抵抗的机制研究
  • 批准号:
    32000511
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
  • 批准号:
    92068107
  • 批准年份:
    2020
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
m6A识别蛋白YTHDFs在体细胞重编程中的调控作用及机制研究
  • 批准号:
    32000501
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子SALL4通过影响pre-mRNA可变剪接调控非Yamanaka因子体细胞重编程的机制研究
  • 批准号:
    32000502
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CD10蛋白N-糖基化修饰介导PI3Kα活化诱导细胞衰老的分子机制研究
  • 批准号:
    32000508
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子剂量效应调控体细胞重编程的表观遗传机制研究
  • 批准号:
    31970681
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
  • 批准号:
    10748479
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Protecting spermatogonial stem cells from chemotherapy-induced damage for fertility preservation in childhood cancer
保护精原干细胞免受化疗引起的损伤,以保存儿童癌症的生育能力
  • 批准号:
    MR/Y011783/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
  • 批准号:
    10637962
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
  • 批准号:
    10664198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A role of balanced sex hormone in DNA repair in human melanocytes
平衡性激素在人类黑素细胞 DNA 修复中的作用
  • 批准号:
    10666307
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
  • 批准号:
    10626281
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了