Distributed Optimization in Smart Grids - Renewal of Proposal for the second funding period of Priority Programme SPP 1984
智能电网的分布式优化 - 优先计划 SPP 1984 第二资助期提案更新
基本信息
- 批准号:360501239
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to find a structural approach to distributed optimization and regulation in Smart Grids, which will take into account not only specific functional properties of the network levels, but also realistic interconnections between these levels. The focus will be on a multi-component model of Smart Grids. The choice of the model consisting of three levels is motivated by recently formulated challenges for the analysis of Smart Grids by means of complex system theory. The idea is to formulate global objectives at each level by means of game theory and distributed optimization. In this project we will develop the corresponding game-theoretic and distributed optimization approaches applicable to the different levels of the Smart Grid model. This work promises to answer the following questions: How should objectives at different structural levels of Smart Grids be formally defined to meet realistic applications as good as possible? What mathematical tools can take communication technologies and information restrictions of large-scale energy systems into account and, thus, provide the methods enabling us to handle the most general payoff-based equilibria learning and constrained distributed non-convex optimization problems?Under which assumptions the theoretic methods proposed in the project will provide some global improvement of the Smart Grid operation in comparison with the techniques presented in the literature so far? How should the proposed theoretic methods be synchronized to achieve a stable and efficient operation of Smart Grids?The main questions addressed in this project will be studied by means of engineering and mathematical tools including game theory, distributed optimization theory, consensus-based methods, stochastic martingale processes, including ergodic Markov chains, and stochastic approximation methods.
该项目的目标是找到一种结构化的方法来分布式优化和调节智能电网,这将不仅考虑到网络级别的特定功能特性,但这些级别之间的现实互连。重点将放在智能电网的多组件模型上。由三个层次组成的模型的选择是出于最近制定的挑战,通过复杂系统理论的智能电网的分析。其思想是通过博弈论和分布式优化在每一级制定全局目标。在这个项目中,我们将开发相应的博弈论和分布式优化方法适用于不同层次的智能电网模型。这项工作承诺回答以下问题:应如何在智能电网的不同结构层次的目标被正式定义,以满足现实的应用尽可能好?什么样的数学工具可以考虑通信技术和大规模能源系统的信息限制,从而提供方法,使我们能够处理最一般的基于收益的均衡学习和约束分布式非凸优化问题?在何种假设下,该项目中提出的理论方法将提供一些全球性的智能电网运行相比,在文献中提出的技术,到目前为止?应该如何同步提出的理论方法,以实现智能电网的稳定和有效的运行?在这个项目中解决的主要问题将通过工程和数学工具,包括博弈论,分布式优化理论,基于共识的方法,随机鞅过程,包括遍历马尔可夫链和随机逼近方法进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Tatiana Tatarenko其他文献
Dr. Tatiana Tatarenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
- 批准号:
RGPIN-2019-04632 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
- 批准号:
RGPIN-2019-04632 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
2054710 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
- 批准号:
RGPIN-2019-04632 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
- 批准号:
RGPIN-2019-04632 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
1901998 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
1901994 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Distributed Evolutionary Computation for Real-time Many-Objective Optimization in Smart City
智慧城市实时多目标优化的分布式进化计算研究
- 批准号:
19K12162 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
1902006 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Design of an Agile and Smart Manufacturing Exchange: Enabling Small Businesses through Standardized Protocols and Distributed Optimization
EAGER:网络制造:敏捷和智能制造交换的设计:通过标准化协议和分布式优化支持小型企业
- 批准号:
1543872 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant