Scaling Beyond DRAM with PMem without Compromising Performance

在不影响性能的情况下使用 PMem 扩展到 DRAM 之外

基本信息

项目摘要

Over the last decade our group has focused on developing in-memory database technology, most notably the HyPer database. The increases in main memory capacities over the last two decades have made in-memory data processing feasible while offering unprecedented performance. Even though most transactional data fits into the largest scale-up servers that facilitate several TB of DRAM capacity, we should reconsider the new opportunities of persistent memory (PMem) for two reasons: (1) its cost/performance ratio appears beneficial in comparison to pure DRAM systems and (2) new applications in the Big Data era require even higher data volumes. Other developments try to tackle the latter with scale-out solutions. However, they incur a much higher communication overhead – even when using new costly communication technologies like InfiniBand and RDMA. As an alternative, we want to scale beyond DRAM capacity by exploiting emerging PMem capabilities in scale-up servers without compromising the pure in-memory processing performance (for those working sets that fit into the large capacity DRAM and PMem). Working sets beyond DRAM plus PMem capacity should induce only a graceful degradation by relying on fast SSD storage. The research work proposed here shall be integrated into the Umbra database system. Umbra is the "spiritual" successor and evolution of our successful pure in-memory system HyPer. It completely eliminates the restrictions of HyPer that data fits into main memory. Umbra is a long-term research project with many Big Data applications. In this three-year project, we concentrate on how modern storage systems such as persistent memory can be integrated as a first-class citizen of Umbra. This requires to re-design the storage- and index-structures for data as well as key functional components like buffering, logging and recovery. The overall goal that we want to achieve is scaling beyond costly DRAM capacity without slowing down if the working set fits into DRAM plus PMem and gracefully degrading if it grows beyond. The full-fledged database system prototype Umbra serves as an integration platform for researching the spectrum of possibilities for the incorporation of persistent memory into a database system. Thereby, Umbra constitutes a realistic (and invaluable) test bed for an end-to-end investigation to achieve and prove practical relevance of the foundational research. The (almost unique) broad expertise of the PIs’ groups covering database as well as OS experience (after Prof. Jana Giceva joined the TUM group) will facilitate the exploitation of the modern storage devices most effectively – either at DBMS or "deeper" and more generic at the OS level.
在过去的十年里,我们的团队一直专注于开发内存数据库技术,最著名的是HyperPer数据库。在过去的二十年中,主存储器容量的增加使得内存数据处理变得可行,同时提供前所未有的性能。尽管大多数事务数据都适合最大的可扩展服务器,可提供数TB的DRAM容量,但我们应该重新考虑持久性内存(PMem)的新机会,原因有两个:(1)与纯DRAM系统相比,其成本/性能比似乎是有益的;(2)大数据时代的新应用程序需要更高的数据量。其他发展试图通过横向扩展解决方案来解决后者。然而,它们会产生更高的通信开销-即使使用新的昂贵通信技术,如InfiniBand和RDMA。作为替代方案,我们希望通过在扩展服务器中利用新兴的PMem功能来扩展DRAM容量,而不会影响纯内存处理性能(对于适合大容量DRAM和PMem的工作集)。 超过DRAM加上PMem容量的工作集应该只会通过依赖快速SSD存储而引起适度的降级。本文提出的研究工作应纳入Umbra数据库系统。Umbra是我们成功的纯内存系统Hyper的“精神”继承者和进化。它完全消除了Hyper的限制,数据适合主内存。Umbra是一个长期的研究项目,有许多大数据应用程序。在这个为期三年的项目中,我们专注于如何将持久性内存等现代存储系统集成为Umbra的一等公民。这需要重新设计数据的存储和索引结构,以及缓冲、日志记录和恢复等关键功能组件。我们希望实现的总体目标是扩展到成本高昂的DRAM容量之外,如果工作集适合DRAM和PMem,则不会放慢速度,如果超出了,则会适度降级。成熟的数据库系统原型Umbra作为一个集成平台,用于研究将持久内存纳入数据库系统的可能性。因此,Umbra构成了一个现实的(和宝贵的)测试平台,用于端到端的调查,以实现和证明基础研究的实际相关性。PI小组(几乎是独一无二的)广泛的专业知识,涵盖数据库以及操作系统经验(在Jana Giceva教授加入TUM小组之后),将促进最有效地利用现代存储设备-无论是在DBMS还是在操作系统层面上“更深入”和更通用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alfons Kemper, Ph.D.其他文献

Professor Dr. Alfons Kemper, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alfons Kemper, Ph.D.', 18)}}的其他基金

Adaptive Steuerungsmechanismen für hoch-skalierende Datenbanksysteme in virtualisierten betrieblichen Transaktionssystemen
虚拟化操作事务系统中高度可扩展数据库系统的自适应控制机制
  • 批准号:
    135926186
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realisierung und Optimierung von verteilten Objektbanken
分布式对象库的实现与优化
  • 批准号:
    5260740
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了