Theoretical Research on Quantum Supremacy
量子霸权理论研究
基本信息
- 批准号:19F19079
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2019
- 资助国家:日本
- 起止时间:2019-07-24 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This academic year we worked on various problems related to quantum algorithms and post-quantum cryptography.We investigated the problem of graph coloring by distributed quantum algorithms. In particular, for the problem of 3-coloring a circle, prior to our work, no nontrivial limitations on the power of quantum algorithms were known. We managed to show that there is a certain correlation among the colors of non-adjacent vertices that holds for every 3-coloring. As a result, we proved that one round of one way quantum communication is not sufficient to solve the problem.In cryptography, random permutations, random functions, and various computational problems on them play important roles. However, unlike for random functions, for random permutations we currently do not know many techniques to prove quantum hardness results. We studied the problem of inverting a permutation, and showed how the recently-introduced compressed oracle framework can be used to prove optimal query lower bounds for the problem.We also studied the computational power of shallow-depth quantum circuits for parity that permit controlled single-qubit gates of unbounded number of control bits. While these unbounded gates might make the model much more powerful, we obtained some preliminary results suggesting that that is not the case. In particular, we classified topologies of all depth-2 circuits in few classes, and for most of them we already showed that they cannot compute the parity of more than 4 input bits, which is already achievable by one and two qubit gates.
本学年,我们研究了与量子算法和后量子密码学相关的各种问题。我们研究了分布式量子算法的图着色问题。特别是,对于圆的三色问题,在我们的工作之前,量子算法的能力没有任何微不足道的限制。我们成功地证明了不相邻顶点的颜色之间存在一定的相关性,这种相关性对于每三种颜色都成立。在密码学中,随机排列、随机函数以及与之相关的各种计算问题起着重要的作用。然而,与随机函数不同,对于随机排列,我们目前还不知道许多技术来证明量子硬度结果。我们研究了置换的倒置问题,并证明了最近引入的压缩Oracle框架可以用来证明该问题的最优查询下界;我们还研究了用于奇偶校验的浅深度量子电路的计算能力,该电路允许无限数量的控制比特的受控单量子比特门。虽然这些无界门可能会使模型变得更加强大,但我们获得了一些初步结果,表明情况并非如此。特别是,我们将所有深度2电路的拓扑分成几类,对于其中大多数电路,我们已经证明了它们不能计算超过4个输入比特的奇偶校验,这已经可以通过一个和两个量子比特门来实现。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Tight Lower Bound For Non-Coherent Index Erasure
非相干索引擦除的严格下界
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Srinivasan Arunachalam;Aleksandrs Belovs;Andrew M. Childs;Robin Kothari;Ansis Rosmanis and Ronald de Wolf;Nathan Lindzey and Ansis Rosmanis
- 通讯作者:Nathan Lindzey and Ansis Rosmanis
Quantum and Classical Algorithms for Approximate Submodular Function Minimization
近似子模函数最小化的量子和经典算法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Yassine Hamoudi;Patrick Rebentrost;Ansis Rosmanis and Miklos Santha
- 通讯作者:Ansis Rosmanis and Miklos Santha
Quantum Coupon Collector
量子优惠券收集器
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Srinivasan Arunachalam;Aleksandrs Belovs;Andrew M. Childs;Robin Kothari;Ansis Rosmanis and Ronald de Wolf
- 通讯作者:Ansis Rosmanis and Ronald de Wolf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ルガル フランソワ其他文献
Fan-outゲート付きの浅層量子回路の計算能力
具有扇出门的浅量子电路的计算能力
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
荒木 亮雅;河内 亮周;ルガル フランソワ;ロスマニス アンシス - 通讯作者:
ロスマニス アンシス
ルガル フランソワ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ルガル フランソワ', 18)}}的其他基金
中規模量子コンピュータによるセキュアな分散型量子計算の基盤創出
使用中型量子计算机创建安全分布式量子计算平台
- 批准号:
24H00071 - 财政年份:2024
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Quantum Algorithms for Large-Scale Quantum Computers: New Horizons and Applications
大规模量子计算机的量子算法:新视野和应用
- 批准号:
20H04139 - 财政年份:2020
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
AF: Small: Lower Bounds in Complexity Theory Via Algorithms
AF:小:通过算法实现复杂性理论的下界
- 批准号:
2127597 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500235 - 财政年份:2015
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500174 - 财政年份:2015
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500254 - 财政年份:2015
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500218 - 财政年份:2015
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500216 - 财政年份:2015
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Quantum algorithms and complexity theory
量子算法和复杂性理论
- 批准号:
105393-2007 - 财政年份:2012
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of algorithms, mathematics of information retrieval, complexity theory
算法设计与分析、信息检索数学、复杂性理论
- 批准号:
7631-2007 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
Faster algorithms for hard problems like subset sum, syndrome decoding in linear codes and the shortest vector problem, with various applications in complexity theory and cryptography
针对子集和、线性码中的校正子解码和最短向量问题等难题的更快算法,在复杂性理论和密码学中具有多种应用
- 批准号:
206738461 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Priority Programmes
Quantum algorithms and complexity theory
量子算法和复杂性理论
- 批准号:
105393-2007 - 财政年份:2010
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual