AF: Small: Lower Bounds in Complexity Theory Via Algorithms

AF:小:通过算法实现复杂性理论的下界

基本信息

  • 批准号:
    2127597
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Computers have transformed nearly every aspect of life, by automating and assisting in helping people work more efficiently. But while researchers know much about what computers can do, there is still comparatively little known about what computers cannot do. This phenomenon is the problem of proving "complexity lower bounds". Lower bounds are among the great scientific mysteries of our time: there are many mathematical conjectures and beliefs about lower bounds---indeed, the security of the Internet and cryptography relies on such conjectures being true---but concrete results are few. The major goal of this project is to leverage humanity's vast knowledge of computer algorithms to prove new lower bounds: put another way, the goal is to use the power of computers to prove limitations on them. A secondary goal is to study the scientific consequences of these connections. It is hard to overestimate the potential impact---societal, scientific, and otherwise---of a theoretical framework which would lead to a fine-grained understanding of what computers can and cannot do. Another goal of the project is to bring complexity research closer to real-world computing, and to introduce practitioners to aspects of complexity that will impact their work. A final goal is educational outreach, through online forums dedicated to learning computer science and collaboration with the media on communicating theoretical computer science to the public.To give one example of a lower bound, a central question in computer science is the famous P versus NP open problem, which is about the difficulty of combinatorial problems which admit short solutions. Such problems can always be solved via brute force, trying all possible solutions. Can brute force always be replaced with a cleverer search method? This question is a major one; no satisfactory answers are known, and concrete answers seem far away. The conventional wisdom is that in general, brute force cannot be entirely avoided, but it is still mathematically possible that most natural search problems can be solved extremely rapidly, without any brute force. The mathematical theory is hampered by negative results showing that most known proof methods are incapable of proving strong lower bounds. A primary objective of this project is to help discover and develop new ways of thinking that will demystify lower bounds, and elucidate the limits and possibilities of computing. The major hypothesis of this project is that an algorithmic perspective on lower bounds is the key: for example, an earlier project led by the same research team shows that algorithms for the circuit-satisfiability problem (which slightly beat brute force search) imply circuit-complexity lower bounds. Other algorithmic problems, such as estimating the acceptance probability of a circuit without using randomness, and finding "bad" inputs which prove that a piece of code does not correctly compute a function, also turn out to be useful for proving lower bounds. The potential scientific applications are vast, ranging from logical circuit design, to network algorithms, to improved hardware and software testing, to better nearest-neighbor search (with its own applications in computer vision, DNA sequencing, and machine learning), and to cryptography and security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机通过自动化和帮助人们更有效地工作,几乎改变了生活的方方面面。但是,尽管研究人员对计算机能做什么知道得很多,但对计算机不能做什么却知之甚少。这种现象就是证明“复杂度下界”的问题。下界是我们这个时代最大的科学谜团之一:有许多关于下界的数学猜想和信念——事实上,互联网和密码学的安全性依赖于这些猜想的真实性——但具体的结果很少。这个项目的主要目标是利用人类对计算机算法的丰富知识来证明新的下限:换句话说,目标是利用计算机的能力来证明它们的局限性。第二个目标是研究这些联系的科学后果。一个理论框架的潜在影响——社会的、科学的和其他方面的——很难被高估,它将导致对计算机能做什么和不能做什么的细粒度理解。该项目的另一个目标是使复杂性研究更接近现实世界的计算,并向从业者介绍将影响他们工作的复杂性方面。最后一个目标是教育推广,通过在线论坛致力于学习计算机科学,并与媒体合作,向公众传播理论计算机科学。举一个下界的例子,计算机科学中的一个中心问题是著名的P对NP开放问题,它是关于允许短解的组合问题的难度。这样的问题总是可以通过暴力解决,尝试所有可能的解决方案。蛮力总能被更聪明的搜索方法所取代吗?这个问题很重要;目前还没有令人满意的答案,具体的答案似乎还很遥远。传统的观点认为,一般来说,蛮力是无法完全避免的,但在数学上,大多数自然搜索问题都可以非常迅速地解决,而不需要任何蛮力。否定结果表明,大多数已知的证明方法不能证明强下界,这阻碍了数学理论的发展。这个项目的主要目标是帮助发现和发展新的思维方式,这将揭开下限的神秘面纱,并阐明计算的极限和可能性。这个项目的主要假设是,从算法的角度来看下界是关键:例如,由同一研究小组领导的一个早期项目表明,电路可满足性问题(略优于蛮力搜索)的算法暗示了电路复杂性的下界。其他算法问题,如在不使用随机性的情况下估计电路的可接受概率,以及找到证明一段代码不能正确计算函数的“坏”输入,也被证明对证明下界很有用。潜在的科学应用是巨大的,从逻辑电路设计到网络算法,到改进的硬件和软件测试,到更好的最近邻搜索(在计算机视觉,DNA测序和机器学习中有自己的应用),以及密码学和安全性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Merlin–Arthur Protocols for Central Problems in Fine-Grained Complexity
改进的 Merlin–Arthur 协议解决细粒度复杂性的核心问题
  • DOI:
    10.1007/s00453-023-01102-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Akmal, Shyan;Chen, Lijie;Jin, Ce;Raj, Malvika;Williams, Ryan
  • 通讯作者:
    Williams, Ryan
On Oracles and Algorithmic Methods for Proving Lower Bounds
关于证明下界的预言机和算法方法
MAJORITY-3SAT (and Related Problems) in Polynomial Time
多项式时间内的 MAJORITY-3SAT(及相关问题)
  • DOI:
    10.1109/focs52979.2021.00103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akmal, Shyan;Williams, Ryan
  • 通讯作者:
    Williams, Ryan
Average-Case Hardness of NP and PH from Worst-Case Fine-Grained Assumptions
来自最坏情况细粒度假设的 NP 和 PH 的平均情况硬度
On the Number of Quantifiers as a Complexity Measure
关于作为复杂性度量的量词数量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fagin, Ronald;Lenchner, Jonathan;Vyas, Nikhil;Williams, R. Ryan
  • 通讯作者:
    Williams, R. Ryan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Williams其他文献

Is Violence Critique?
暴力是批评吗?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Sharp threshold results for computational complexity
计算复杂度的尖锐阈值结果
Inductive Time-Space Lower Bounds for Sat and Related Problems
Sat 及相关问题的归纳时空下界
  • DOI:
    10.1007/s00037-007-0221-1
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ryan Williams
  • 通讯作者:
    Ryan Williams
Improved Parameterized Algorithms for above Average Constraint Satisfaction
改进的参数化算法可实现高于平均水平的约束满足
All-pairs bottleneck paths for general graphs in truly sub-cubic time
真正亚立方时间内一般图的全对瓶颈路径

Ryan Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Williams', 18)}}的其他基金

Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
  • 批准号:
    2300544
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Robots that Plan Interactions, Come and Go, and Build Trust
职业:规划交互、来来去去并建立信任的机器人
  • 批准号:
    2046770
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CPS: Medium: Computation-Aware Autonomy for Timely and Resilient Multi-Agent Systems
CPS:中:及时且有弹性的多代理系统的计算感知自治
  • 批准号:
    1932074
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: INT: Balancing Collaboration and Autonomy for Multi-Robot Multi-Human Search and Rescue
NRI:INT:平衡多机器人多人搜索和救援的协作与自主
  • 批准号:
    1830414
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1741615
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1741638
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF:Small:Limitations on Algebraic Methods via Boolean Complexity Theory
AF:Small:布尔复杂性理论对代数方法的限制
  • 批准号:
    1617580
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders
NRI:与空中和水上机器人协调检测和跟踪危险物质,以通知紧急救援人员
  • 批准号:
    1637915
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Common Links in Algorithms and Complexity
职业:算法和复杂性的常见联系
  • 批准号:
    1552651
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

NSF-BSF: AF: Small: Lower bounds on concrete complexity
NSF-BSF:AF:小:具体复杂性的下限
  • 批准号:
    2131899
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: New Approaches to Complexity Theory Lower Bounds
AF:小:复杂性理论下界的新方法
  • 批准号:
    2114116
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Computational Complexity Lower Bounds: Time, Space and Communication
AF:小:计算复杂度下限:时间、空间和通信
  • 批准号:
    2007462
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Lower Bounds for Computational Models, and Relations to Other Topics in Computational Complexity
AF:小:计算模型的下界以及与计算复杂性中其他主题的关系
  • 批准号:
    1714779
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1247081
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
  • 批准号:
    1161812
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117427
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117426
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Learnability, Randomness, and Lower Bounds
AF:小:可学习性、随机性和下界
  • 批准号:
    0917417
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
  • 批准号:
    1017403
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了