High-dimensional efficient approximation based on sampling along rank-1 structures with applications

基于Rank-1结构采样的高维高效近似及其应用

基本信息

项目摘要

Based on the latest results on reconstructing rank-1 lattices as spatial discretizations for multivariate trigonometric polynomials, we will use the union of multiple rank-1 lattices as spatial discretizations in spatial domain. These sampling sets seem to combine the advantages of both, sparse grids and rank-1 lattices. The development of fast algorithms for the computation of the high-dimensional Fourier transform as well as the estimate of the approximation properties of the new sampling operators are fundamentalresearch focuses.Furthermore, we will pursue the already developed concept for the identification of sparse approximations and the new sampling strategy will decisively improve the approach. In addition, we will use different periodization techniques in order to establish fast algorithms for non-periodic high dimensional problems. In this context, we plan a cooperation with a commercial enterprise.Partial differential equations with random coefficients are one important application of the developed algorithms.In particular, mathematical problems that depend on a big number of random parameters can be efficiently treated by thenew algorithms. One crucial advantage is the automated determination of significant parameters and the interaction of different parameters.
基于对多元三角多项式进行秩1格空间离散化重构的最新成果,我们将在空间域上使用多个秩1格的并集作为空间离散化。这些采样集似乎结合了稀疏网格和秩1格的优点。高维傅里叶变换的快速计算算法的开发以及新采样算子近似性质的估计是基本的研究重点。此外,我们将采用已经开发的概念来识别稀疏近似,新的采样策略将果断地改进该方法。此外,我们将使用不同的周期化技术来建立非周期高维问题的快速算法。在此背景下,我们计划与一家商业企业合作。带随机系数的偏微分方程是所开发算法的一个重要应用。特别是对于依赖于大量随机参数的数学问题,新算法可以有效地处理。一个关键的优势是重要参数的自动确定和不同参数的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel Potts其他文献

Professor Dr. Daniel Potts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Towards Provably Efficient Representation Learning in Reinforcement Learning via Rich Function Approximation
RI:小:通过丰富函数逼近实现强化学习中可证明有效的表示学习
  • 批准号:
    2154711
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient approximation and preconditioning strategies for models of swirling flow
旋流流模型的高效逼近和预处理策略
  • 批准号:
    EP/W033801/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
AF: RI: Small: Computationally Efficient Approximation of Stationary Points in Convex and Min-Max Optimization
AF:RI:小:凸和最小-最大优化中驻点的计算高效近似
  • 批准号:
    2007757
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
  • 批准号:
    1752302
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SHF: Small: Developing a Highly Efficient and Accurate Approximation System for Warehouse-Scale Computers with the Sub-dataset Distribution Aware Approach
SHF:小型:采用子数据集分布感知方法为仓库规模计算机开发高效、准确的近似系统
  • 批准号:
    1717388
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational Approximation Approaches for Efficient Clinical Predictions
用于高效临床预测的变分逼近方法
  • 批准号:
    MR/R024847/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CRII: RI: Efficient Structure Learning and Approximation of Networks of Causally Interacting Processes
CRII:RI:因果交互过程网络的有效结构学习和逼近
  • 批准号:
    1566513
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient realizability verification of reactive system specifications without approximation
无需近似即可有效验证反应式系统规范的可实现性
  • 批准号:
    15K15969
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stable, Efficient, Adaptive Algorithms for Approximation and Integration
稳定、高效、自适应的逼近和积分算法
  • 批准号:
    1522687
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Efficient approximation algorithm design using function approximation
使用函数逼近的高效逼近算法设计
  • 批准号:
    15K15945
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了