Multi-field modelling and simulation of fibre reinforced polymers

纤维增强聚合物的多场建模与仿真

基本信息

项目摘要

The overall goal of this project is to develop a numerical framework for the simulation of thermomechanical damage and fracture in fibre reinforced polymers under large deformations and displacements. This will help us to predict and understand transient fracture mechanisms as they arise in high-velocity and high-energy impact situations. To this end, several novel and sophisticated numerical methods have to be developed and combined. A phase-field fracture formulation taking into account the anisotropic material behaviour as well as local damage and thermal effects has to be introduced for a realistic prediction of complex three-dimensional fracture patterns. Higher-order phase-field formulations increase the accuracy of the evaluation of the fracture energy but necessitates spatial discretization schemes which fulfil the required continuity conditions. In this context, the concept of isogeometric analysis is able to provide sufficient continuous approximations and has to be considered along with a hierarchical refinement scheme to resolve local features. Advanced mixed variational principles satisfying the polyconvexity condition in the sense of Ball have to be developed for a stable and robust numerical framework. This promising approaches enable great flexibility and clarity for the development of new multi-field formulations, since the constitutive laws can be solved as separate field. Mortar based contact formulations have shown to be superior against classical collocation type methods and thus they have to be considered for the three-dimensional multi-physical contact interface. Eventually, stable and second order accurate implicit time integration schemes have to be developed. In this context,structure-preserving integrators allow for comparatively large time steps, raising the efficiency and robustness of the simulation of the given problem at hand dramatically. We will combine all different approaches in a unified numerical framework and conduct several static as well as transient benchmark tests for verification purposes and apply this framework finally to realistic industrial applications.
该项目的总体目标是开发一个数值框架,用于模拟大变形和位移下纤维增强聚合物的热机械损伤和断裂。这将有助于我们预测和理解瞬态断裂机制,因为它们出现在高速和高能量的冲击情况。为此,必须开发和组合几种新颖而复杂的数值方法。一个相场断裂配方考虑到各向异性材料的行为以及局部损伤和热效应,必须引入一个现实的预测复杂的三维断裂模式。高阶相场公式提高了断裂能的评价精度,但需要满足所需连续性条件的空间离散化方案。在这种情况下,等几何分析的概念是能够提供足够的连续近似,并考虑沿着与分层细化方案,以解决当地的特点。先进的混合变分原理,满足球意义下的多凸性条件,必须开发一个稳定和强大的数值框架。这种有前途的方法,使新的多场制剂的发展具有很大的灵活性和清晰度,因为本构关系可以解决作为单独的字段。基于砂浆的接触公式已被证明是上级对经典的配置类型的方法,因此,他们必须考虑三维多物理接触界面。最后,稳定的和二阶精度的隐式时间积分格式的发展。在这种情况下,结构保持积分器允许相对较大的时间步长,提高了效率和鲁棒性的模拟给定的问题显着。我们将结合联合收割机在一个统一的数值框架,并进行几个静态以及瞬态基准测试验证的目的,并最终将此框架应用到现实的工业应用。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isogeometric analysis of fiber reinforced composites using Kirchhoff–Love shell elements
  • DOI:
    10.1016/j.cma.2020.112845
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    J. Schulte;M. Dittmann;S. Eugster;S. Hesch;T. Reinicke;F. dell’Isola;C. Hesch
  • 通讯作者:
    J. Schulte;M. Dittmann;S. Eugster;S. Hesch;T. Reinicke;F. dell’Isola;C. Hesch
Multidimensional coupling: A variationally consistent approach to fiber-reinforced materials
多维耦合:纤维增强材料的变异一致方法
  • DOI:
    10.1016/j.cma.2021.113869
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Khristenko;S. Schuß;M. Krüger;F. Schmidt;B. Wohlmuth;C. Hesch
  • 通讯作者:
    C. Hesch
Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids
A strain-gradient formulation for fiber reinforced polymers: hybrid phase-field model for porous-ductile fracture
  • DOI:
    10.1007/s00466-021-02018-0
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Maik Dittman;Jonathan Schult;F. Schmidt;C. Hesch
  • 通讯作者:
    Maik Dittman;Jonathan Schult;F. Schmidt;C. Hesch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Maik Dittmann其他文献

Dr.-Ing. Maik Dittmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
  • 批准号:
    12373051
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于太赫兹光谱近场成像技术的应力场测量方法
  • 批准号:
    11572217
  • 批准年份:
    2015
  • 资助金额:
    120.0 万元
  • 项目类别:
    面上项目
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
个性化近场头相关传输函数的测量与快速定制
  • 批准号:
    11104082
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
通用声场空间信息捡拾与重放方法的研究
  • 批准号:
    11174087
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
飞秒双色场下分子的三维无场准直动力学研究
  • 批准号:
    11004078
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Field, laboratory and modelling constraints on fluid transport in fractured mudrocks with a focus on chemical self-healing
裂隙泥岩中流体输送的现场、实验室和建模约束,重点是化学自修复
  • 批准号:
    2891563
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Phase-Field Fracture Modelling for Lifetime Assessment of Thermal Barrier Coatings
用于热障涂层寿命评估的相场断裂建模
  • 批准号:
    2787426
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Study and modelling of phase-transformation in metals and al loys, incorporating computer modelling with phase-field mode lling.
金属和合金相变的研究和建模,将计算机建模与相场建模相结合。
  • 批准号:
    2883978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Individualized Functional Targets for Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder: Does Targeting sgACC-DLPFC Connectivity Lead to Better Outcomes?
经颅磁刺激治疗重度抑郁症的个体化功能目标:以 sgACC-DLPFC 连接为目标是否会带来更好的结果?
  • 批准号:
    474509
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Modelling Credit Risk with Graph Neural Networks Field: Graphical Neural Networks &Natural Language Processing on Finance
使用图神经网络对信用风险建模领域:图形神经网络
  • 批准号:
    2739502
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Phase field collagen fibrils: modelling mechanical properties and structure of collagen fibrils
相场胶原原纤维:模拟胶原原纤维的机械特性和结构
  • 批准号:
    534448-2019
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Phase field modelling for fatigue design curve predictions whilst factoring in material variability
用于疲劳设计曲线预测的相场建模,同时考虑材料的可变性
  • 批准号:
    2748098
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling Human Genomic Variations Using Markov Random Field: A Feasibility Study
使用马尔可夫随机场模拟人类基因组变异:可行性研究
  • 批准号:
    EP/W016109/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mesoscale finite element phase field modelling of liquid lithium corrosion of steels
钢液锂腐蚀的介观有限元相场建模
  • 批准号:
    2764612
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Novel electric-field modelling approach to quantify changes in resting state functional connectivity following theta burst stimulation
新颖的电场建模方法可量化 θ 爆发刺激后静息态功能连接的变化
  • 批准号:
    10686090
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了