Unraveling the Mechano-Regulation of Von Willebrand Factor

揭示冯·维勒布兰德因子的机械调节

基本信息

项目摘要

Von Willebrand Factor (VWF) is a large glycoprotein critically involved in hemostasis. VWF senses shear flow irregularities in the blood stream: at sites of vascular injury, where hydrodynamic forces are increased, VWF extends and subsequently promotes platelet adhesion. Since formation of a platelet plug is essential for primary hemostasis, defects in or deficiency of VWF can lead to severe bleeding disorders, known as von Willebrand disease. In the blood, VWF exists in the form of linear multimers comprising a variable number of dimeric subunits, which form the smallest repeating subunits and are linked via N-terminal disulfide bonds. Under static conditions, VWF adopts collapsed conformations; under elevated hydrodynamic forces, the multimers lengthen through opening of intra- and intermolecular interactions and unfolding of the VWF A2 domain. As hydrodynamic peak forces within the molecule strongly correlate with its effective length, lengthening can trigger opening of further interactions at even higher forces. We and others have elucidated some of the critical events in VWF force sensing by single-molecule force spectroscopy, in particular A2 domain unfolding at ~15 pN and the dissociation of a strong intermonomer D4 domain interaction above ~50 pN. Despite these recent advances many open questions remain. Simulations suggest much lower critical forces for initial VWF elongation (~ 1 pN). Additionally, indirect experimental evidence points to loss of interactions, in particular loss of intermonomer C-domain and weak D4 domain interactions at low pH, at forces <5 pN, below the resolution limit of AFM force spectroscopy. Finally, there is currently no mechanistic understanding of the D4 domain mediated intermonomer interactions due to a lack of high-resolution structures.We propose to combine novel force spectroscopy approaches with high-resolution structural information to unravel the force-induced activation and regulation of VWF.Using novel molecular attachment strategies we want to probe VWF force-induced transitions in particular using magnetic tweezers, which can resolve forces down to the femto-Newton range and enable stable measurements for long periods of time (~min to hours) to investigate refolding and rebinding kinetics. Force spectroscopy of wildtype VWF and several mutant and deletion constructs will be combined with high- and low-resolution structure determination, in particular using crystallography, small-angle X-ray scattering, and AFM imaging. Structural knowledge will allow us to interpret the findings from force spectroscopy and guide the design of additional experiments. Structural information combined with direct measurements of the critical initial steps of VWF elongation and regulation will improve our mechanistic understanding of its role in hemostasis and have the potential to direct therapeutic approaches.
血管性血友病因子(VWF)是一种重要参与止血的大糖蛋白。VWF感知血流中的剪切流不规则性:在血管损伤部位,其中流体动力学力增加,VWF延伸并随后促进血小板粘附。由于血小板栓的形成对于原发性止血至关重要,VWF的缺陷或缺乏可导致严重的出血性疾病,称为血管性血友病。在血液中,VWF以线性多聚体的形式存在,所述线性多聚体包含可变数目的二聚体亚基,所述二聚体亚基形成最小的重复亚基并且通过N-末端二硫键连接。在静态条件下,VWF采用塌陷构象;在升高的流体动力学力下,多聚体通过打开分子内和分子间相互作用以及VWF A2结构域的解折叠而延长。由于分子内的流体动力学峰值力与其有效长度强烈相关,因此延长可以在更高的力下触发进一步相互作用的打开。我们和其他人已经通过单分子力谱阐明了VWF力传感中的一些关键事件,特别是A2结构域在~15 pN处展开和高于~50 pN的强单体间D4结构域相互作用的解离。尽管最近取得了这些进展,但仍存在许多悬而未决的问题。模拟表明初始VWF伸长的临界力低得多(~ 1 pN)。此外,间接的实验证据指出相互作用的损失,特别是在低pH值下,在力<5 pN,低于AFM力谱的分辨率极限时,单体间C结构域和弱D4结构域相互作用的损失。最后,由于缺乏高分辨率的结构,目前还没有对D4结构域介导的单体间相互作用的机制的理解。我们建议将联合收割机新的力谱方法与高分辨率的结构信息相结合,以解开力诱导的VWF激活和调节。使用新的分子连接策略,我们希望探测VWF力诱导的转换,特别是使用磁镊,它可以分辨低至毫微微牛顿范围的力,并能够长时间(~分钟至数小时)进行稳定测量,以研究再折叠和再结合动力学。野生型VWF和几个突变体和缺失构建体的力谱将与高分辨率和低分辨率结构测定相结合,特别是使用晶体学,小角X射线散射和AFM成像。结构知识将使我们能够解释力谱的发现,并指导其他实验的设计。结构信息与VWF延伸和调节的关键初始步骤的直接测量相结合,将提高我们对其在止血中的作用的机械理解,并有可能指导治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Martin Benoit其他文献

Dr. Martin Benoit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Martin Benoit', 18)}}的其他基金

Mechanical properties of VWF in single molecule and cell adhesion force experiments using AFM
使用 AFM 进行单分子和细胞粘附力实验中 VWF 的机械特性
  • 批准号:
    200682754
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Electrophysiological and mechanical activity of cells triggered and traced on the level of single receptor-ligand interactions
在单一受体-配体相互作用水平上触发和追踪细胞的电生理和机械活动
  • 批准号:
    90621944
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

生物力学传导通路mechano-YAP/TAZ对放射损伤引起的勃起功能障碍中组织再生和功能修复的研究
  • 批准号:
    82373525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Mechanism of RPE regulation by mechano-stress through the transcription factor MRTF/YAP pathway
机械应激通过转录因子 MRTF/YAP 通路调节 RPE 的机制
  • 批准号:
    23K09028
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulation of cold tolerance and thermo-sensation via degenerin-type mechano receptor DEG-1
通过简并蛋白型机械受体 DEG-1 调节耐冷性和热感觉
  • 批准号:
    21K19279
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The Role of Reactive Oxygen Species in Osteocyte Mechano-Transduction and Sclerostin Regulation
活性氧在骨细胞机械传导和硬化素调节中的作用
  • 批准号:
    10228399
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Optimization of PDL cell-derived exosome by WNT/mechano signals and regulation of periodontal tissue regeneration
WNT/机械信号优化 PDL 细胞来源的外泌体并调节牙周组织再生
  • 批准号:
    20K09933
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞机械调节中的作用
  • 批准号:
    10092758
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Mechanisms of osteocyte mechano-signaling and sclerostin regulation
骨细胞机械信号传导和硬化素调节机制
  • 批准号:
    10395929
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞机械调节中的作用
  • 批准号:
    9788548
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanisms of osteocyte mechano-signaling and sclerostin regulation
骨细胞机械信号传导和硬化素调节机制
  • 批准号:
    9922216
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Piezo1 in neural stem cell mechano-regulation
Piezo1 在神经干细胞力学调节中的作用
  • 批准号:
    10207802
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了