Order preserving operators in problems of optimal control and in the theory of partial differential equations
最优控制问题和偏微分方程理论中的保序算子
基本信息
- 批准号:386620124
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Positivity and order structures in (normed) vector spaces as well as positive and structure preserving operators on these spaces play an important role in operator theory and its applications such as dynamical systems and partial differential equations. In this project we propose to study, together with our partners from Moscow, Voronezh and Vladikavkaz, optimal control problems in ordered spaces, order structures and order preserving operators and semigroups of operators on partially ordered, normed spaces which are in general not Riesz spaces. This project proposal replies to a call about a DFG-RFBR Cooperation. This project proposal is also a continuation of an Initiation of an International Collaboration (from July 2014 to June 2015, together with members of the Russian Academy of Sciences at Vladikavkaz). A previous version of this project proposal has been submitted in the framework of a DFG-RSF Cooperation in September 2015 (GZ: CH 1282/3-1) and was evaluated positively on the German side, but not on the Russian side. We still intend to deepen this collaboration and expect from this international cooperation new insights and results for linear and nonlinear order preserving operators on pre-Riesz spaces, finite elements in spaces of such operators as well as for positive operator semigroups on ordered Banach spaces.
赋范向量空间中的正性和序结构以及这些空间上的正性和保结构算子在算子理论及其应用(如动力系统和偏微分方程)中起着重要的作用。在这个项目中,我们建议研究,连同我们的合作伙伴从莫斯科,沃罗涅日和弗拉迪卡夫卡兹,最优控制问题的有序空间,秩序结构和秩序保持运营商和半群的运营商偏序,赋范空间一般不Riesz空间。本项目建议书是对DFG-RFBR合作呼吁的回应。该项目提案也是国际合作启动的延续(从2014年7月至2015年6月,与弗拉迪卡夫卡兹的俄罗斯科学院成员一起)。2015年9月,在DFG-RSF合作框架内提交了该项目提案的前一版本(GZ:CH 1282/3-1),并在德国方面得到了积极评价,但在俄罗斯方面没有。我们仍然打算深化这种合作,并期望从这种国际合作的新的见解和结果的线性和非线性保序算子的pre-Riesz空间,有限元素的空间,这样的运营商以及正算子半群有序Banach空间。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Almost interior points in ordered Banach spaces and the long-term behaviour of strongly positive operator semigroups
有序Banach空间中的几乎内点和强正算子半群的长期行为
- DOI:10.4064/sm190111-18-10
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Glück;Jochen;Martin
- 通讯作者:Martin
Interpolation of nonlinear positive or order preserving operators on Banach lattices
Banach 格上非线性正算子或保序算子的插值
- DOI:10.1007/s11117-019-00688-y
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Fiorenza;Alberto;Sebastian
- 通讯作者:Sebastian
Narrow and C-compact Orthogonally Additive Operators in Lattice-Normed Spaces
格范空间中的窄和 C 紧正交可加算子
- DOI:10.1007/s00025-019-1075-y
- 发表时间:2019
- 期刊:
- 影响因子:2.2
- 作者:Martin
- 通讯作者:Martin
Atomic Operators in Vector Lattices
矢量格子中的原子算子
- DOI:10.1007/s00009-020-01581-9
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:
- 通讯作者:
Multiplicative Representation of Real-Valued bi-Riesz Homomorphisms on Partially Ordered Vector Spaces
偏序向量空间上实值双Riesz同态的乘法表示
- DOI:10.1007/978-3-030-70974-7_10
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kalauch;van Gaans
- 通讯作者:van Gaans
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ralph Chill其他文献
Professor Dr. Ralph Chill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
- 批准号:
ST/Y50998X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant