Theory and Applications of Hypergeometric Series

超几何级数理论与应用

基本信息

  • 批准号:
    DP0663525
  • 负责人:
  • 金额:
    $ 17.04万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2006
  • 资助国家:
    澳大利亚
  • 起止时间:
    2006-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

Techniques based on hypergeometric series lie at the heart of an exciting and rapidly developing class of mathematical methods, with applications to many areas of science and engineering, such as computer science, statistics, physics, chemistry and biology. In the past decades Australia has been at the forefront of important developments in the field, and this proposal serves to further strengthen the country's leading reputation. Many of the modern methods in the theory require expertise in mathematics as well as a high level of programming skills. This combination provides a unique training ground for higher degree students aiming at careers in financial mathematics, weather/climate forecasting and internet security.
基于超几何级数的技术是一类令人兴奋和迅速发展的数学方法的核心,应用于科学和工程的许多领域,如计算机科学、统计学、物理学、化学和生物学。 在过去的几十年里,澳大利亚一直走在该领域重要发展的前列,这一提议有助于进一步加强该国的领先声誉。 该理论中的许多现代方法需要数学专业知识和高水平的编程技能。这一结合为金融数学、天气/气候预报和互联网安全领域的高等学位学生提供了一个独特的培训场所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Peter Forrester其他文献

Prof Peter Forrester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Peter Forrester', 18)}}的其他基金

Expanding and linking random matrix theory
扩展和链接随机矩阵理论
  • 批准号:
    DP210102887
  • 财政年份:
    2021
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
Random matrix products, loop equations and integrability
随机矩阵乘积、循环方程和可积性
  • 批准号:
    DP170102028
  • 财政年份:
    2017
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
A synthesis of random matrix theory for applications in mathematics, physics and engineering
随机矩阵理论在数学、物理和工程中的综合应用
  • 批准号:
    DP140102613
  • 财政年份:
    2014
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
Characteristic polynomials in random matrix theory
随机矩阵理论中的特征多项式
  • 批准号:
    DP110102317
  • 财政年份:
    2011
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
Random matrix theory and high dimensional inference
随机矩阵理论和高维推理
  • 批准号:
    LX0990095
  • 财政年份:
    2009
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Linkage - International
The Sakai scheme-Askey table correspondence, analogues of isomonodromy and determinantal point processes
Sakai 方案-Askey 表对应、等单律和行列式点过程的类似物
  • 批准号:
    DP0988944
  • 财政年份:
    2009
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
Integrable structures in models of complex systems
复杂系统模型中的可积结构
  • 批准号:
    DP0881415
  • 财政年份:
    2008
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects
Mathematical studies on the statistical properties of complex systems
复杂系统统计特性的数学研究
  • 批准号:
    DP0345527
  • 财政年份:
    2003
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Projects

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    2000
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    1999
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    1998
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
  • 批准号:
    7353-1995
  • 财政年份:
    1997
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
  • 批准号:
    7353-1995
  • 财政年份:
    1996
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
  • 批准号:
    7353-1995
  • 财政年份:
    1995
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Orthogonal polynomials and basic hypergeometric series; 2. Geometric function theory and linear operators; 3. Special functions and their applications
1.正交多项式和基本超几何级数;
  • 批准号:
    7353-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Orthogonal polynomials and basic hypergeometric series; 2. Geometric function theory and linear operators; 3. Special functions and their applications
1.正交多项式和基本超几何级数;
  • 批准号:
    7353-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
1. Orthogonal polynomials and basic hypergeometric series; 2. Geometric function theory and linear operators; 3. Special functions and their applications
1.正交多项式和基本超几何级数;
  • 批准号:
    7353-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 17.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了