Systems of differential equations with group actions and their applications
具有群作用的微分方程组及其应用
基本信息
- 批准号:16340034
- 负责人:
- 金额:$ 10.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. A conjecture for the classification of completely integrable quantum systems related to classical root systems is given and it is proved under a suitable condition. In particular the classification is complete if the systems have a regular singularity at an infinite point, which are most important cases. Higher order operators corresponding to the integrable Schrodinger operators are explicitly given and the complete integrability is proved. The relation between the systems are cleared.2. The generators of the annihilator of a generalized Verma module of a scalar type for reductive Lie algebra are constructed in two ways by quatization of elementary divisors and by that of minimal polynomials in linear algebra. These correspond to generalization of Capelli identity and Hua operators. These also give the differential equations for degenerate series representations on generalized flag manifolds and some applications to integral geometry including Radon and Poisson transformations.3. The condition for the existence of Whittaker model for degenerate series is obtained and the multiplicity of the realization is calculated under algebraic sense and also under the moderate growth condition. The differential equations satisfied by K-finite vectors in the realization is also obtained and the condition that the vectors are expressed by classical Whittaker functions is obtained.4. A general theory of systems of partial differential equations of a little wider class than those with regular singularities is studied and their multi-valued holomorphic solutions are constructed.5. The subsystems of a root system are classified and the homomorphisms between subsystems are classified.6. Confluent limits, restrictions to singular sets and different real forms of Heckman-Opdam hypergeometric systems are studied. It is proved that the Whittaker vector with the moderate growth is obtained by this limit of Heckman-Opdam hypergeometric function.
1. 给出了与经典根系统相关的完全可积量子系统分类的一个猜想,并在适当的条件下证明了这个猜想。特别是当系统在无穷远点上有规则奇点时,分类是完备的,这是最重要的情况。给出了可积薛定谔算子对应的高阶算子,并证明了其完全可积性。清除系统间的关系。利用初等除数的定性和线性代数中最小多项式的定性两种方法构造了约化李代数中标量型广义Verma模的湮灭子的产生子。这些对应于Capelli恒等式和Hua算子的推广。并给出了广义标志流形上退化级数表示的微分方程及其在Radon变换和泊松变换等积分几何中的应用。得到了退化级数Whittaker模型存在的条件,并在代数意义下和适度增长条件下计算了其实现的多重性。得到了实现中k -有限向量所满足的微分方程,并给出了这些向量用经典Whittaker函数表示的条件。研究了一类比正则奇点广义的偏微分方程组的一般理论,构造了它们的多值全纯解。对根系的子系统进行了分类,并对子系统之间的同态进行了分类。研究了Heckman-Opdam超几何系统的合流极限、奇异集约束和不同实形式。利用Heckman-Opdam超几何函数的这一极限,证明了具有中等增长的Whittaker向量。
项目成果
期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radon transforms on generalized flag, manifolds
氡气在广义旗、流形上的变换
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:KAWANO;Shuichi;et. al.;T. Oshima
- 通讯作者:T. Oshima
Whittaker models of degenerate principal series
简并主级数 Whittaker 模型
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:HYAKUTAKE;Hiroto;et. al.;大島利雄
- 通讯作者:大島利雄
Annihilators of generalized Verma modules of the scalar type for class Lie algebra
类李代数标量型广义 Verma 模的歼灭子
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H.Boos;M.Jimbo;T.Miwa;F.Smirnov;Y.Takeyama;B.Feigin et al.;H.Boos et al.;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;Toshio Oshima;Toshio Oshima
- 通讯作者:Toshio Oshima
Completely integrable quantum systems associated with classical root systems
与经典根系统相关的完全可积量子系统
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H.Boos;M.Jimbo;T.Miwa;F.Smirnov;Y.Takeyama;B.Feigin et al.;H.Boos et al.;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;T. Oshima;Toshio Oshima;Toshio Oshima;Toshio Oshima;Toshio Oshima
- 通讯作者:Toshio Oshima
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OSHIMA Toshio其他文献
OSHIMA Toshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OSHIMA Toshio', 18)}}的其他基金
Study of group representation and differential equations associated with root systems and its applications
与根系相关的群表示和微分方程研究及其应用
- 批准号:
20244008 - 财政年份:2008
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Systems of differential equations attached to representations of Lie groups
附加到李群表示的微分方程组
- 批准号:
12440034 - 财政年份:2000
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential equations on homogeneous spaces
齐次空间上的微分方程
- 批准号:
09440048 - 财政年份:1997
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systems of differential equations invariant under an action of a group
群作用下不变的微分方程组
- 批准号:
05452010 - 财政年份:1993
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Measurement of Surface Properties on Fine Ground Product by Laser-Raman Spectrum
激光拉曼光谱测量细磨产品的表面特性
- 批准号:
01550749 - 财政年份:1989
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Harmonic Analysis on Symmetric Spaces
对称空间的调和分析
- 批准号:
62460004 - 财政年份:1987
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Continuing Grant
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
Research Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




