Determination of the flat band potential of doped and non-doped nanoparticles in aqueous environment using a novel electrode preparation method

使用新型电极制备方法测定水环境中掺杂和非掺杂纳米粒子的平带电势

基本信息

项目摘要

For many applications and especially for an evaluation of the toxicity, the electrochemical properties of nanoparticles are essential. These are related to the flat band potential, i.e. the electrochemical potential, of the nanoparticles, which depends on the synthesis method and may be modified through doping of foreign atoms into the nanoparticles. The electrochemical potential also has an influence on the zeta-potential that determines the agglomeration behavior of particles in suspensions and the surface reactions proceeding in aqueous biological environments. The knowledge of the exact flat band potential of nanoparticles would greatly enhance our understanding of particle surface charges. However, the electrochemical characterization of nanoparticles via impedance spectroscopy using porous electrodes, which preserve the nanoparticles surface properties, is limited due to the disturbing contributions of the substrate-electrolyte contact. The aim of our proposal is to develop and fundamentally understand a novel electrode preparation method, which allows to block the disturbing contribution of the substrate-electrolyte contact of the porous electrodes and enables a fast particle characterization in aqueous environments. With the sucessful implementation of our electrode preparation method we are able to determine the flat band potential of nanoparticles and assess to which extend doping allows for a modification of the electrochemical properties, i.e. the flat band potential and the zeta-potential, of the nanoparticles.
对于许多应用,特别是对于毒性的评估,纳米颗粒的电化学性质是必不可少的。这些与纳米颗粒的平带电势(即电化学电势)有关,其取决于合成方法并且可以通过将外来原子掺杂到纳米颗粒中来改变。电化学电势也对ζ电势有影响,ζ电势决定悬浮液中颗粒的聚集行为和在水性生物环境中进行的表面反应。精确的平带势的纳米粒子的知识将大大提高我们对粒子表面电荷的理解。然而,电化学表征的纳米粒子通过阻抗谱使用多孔电极,这保持了纳米粒子的表面特性,是有限的,由于干扰的贡献的基板-电解质接触。我们建议的目的是开发和从根本上理解一种新的电极制备方法,该方法允许阻止多孔电极的基底-电解质接触的干扰贡献,并能够在水性环境中快速表征颗粒。随着我们的电极制备方法的成功实施,我们能够确定纳米颗粒的平带电位,并评估掺杂允许改变纳米颗粒的电化学性质(即平带电位和zeta电位)的程度。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells
  • DOI:
    10.1007/s11064-020-02954-y
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Arundhati Joshi;H. Naatz;K. Faber;S. Pokhrel;R. Dringen
  • 通讯作者:
    Arundhati Joshi;H. Naatz;K. Faber;S. Pokhrel;R. Dringen
Inside Back Cover: Model‐Based Nanoengineered Pharmacokinetics of Iron‐Doped Copper Oxide for Nanomedical Applications (Angew. Chem. Int. Ed. 5/2020)
封底内页:用于纳米医学应用的铁掺杂氧化铜的基于模型的纳米工程药代动力学(Angew Chem Int Ed 5/2020)
  • DOI:
    10.1002/anie.201916183
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manshian;Rios Luci;Tsikourkitoudi;Deligiannakis;Birkenstock;Pokhrel;Mädler;Soenen
  • 通讯作者:
    Soenen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Lutz Mädler其他文献

Professor Dr.-Ing. Lutz Mädler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Lutz Mädler', 18)}}的其他基金

During a protein spray drying process, thermal and mechanical stresses are exerted on the proteins leading to degradation. We hypothesize that in situ measurements of the droplet size, temperature distribution inside droplets and UV fluorescence will prov
在蛋白质喷雾干燥过程中,热应力和机械应力作用于蛋白质,导致蛋白质降解。
  • 批准号:
    315006086
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mechanistic Study of Particle Formation from Burning Droplets
燃烧液滴颗粒形成机理研究
  • 批准号:
    195598900
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Methodology for a one step fabrication of gas sensors using flame spray pyrolysis
使用火焰喷射热解一步法制造气体传感器的方法
  • 批准号:
    103134545
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional nanoparticles by controlled production and coating in aerosol processes
通过气溶胶过程中的控制生产和涂层来实现功能性纳米颗粒
  • 批准号:
    5451890
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
DeepMixing – Quantification of the mixing and interfacial hetero-characteristics of nanoparticle aggregates forming in an aerosol mixing zone
DeepMishing â 定量气溶胶混合区中形成的纳米粒子聚集体的混合和界面异质特性
  • 批准号:
    462260834
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Precursor release in nanoparticle producing spray flames: Single droplet investigation of multicomponent mass transfer (within SPP 1980)
产生喷雾火焰的纳米粒子中的前体释放:多组分传质的单液滴研究(SPP 1980 内)
  • 批准号:
    373275335
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    462226334
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
在受限的二维微流中反应前体/溶剂微滴,以合成定制的纳米材料
  • 批准号:
    509113367
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: studying superconductivity and ferromagnetism in 2D material heterostructures with flat energy band
职业:研究具有平坦能带的二维材料异质结构中的超导性和铁磁性
  • 批准号:
    2143384
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase I: Ultra Wide Band (UWB) Ka-Band Flat Panel Antenna
SBIR 第一阶段:超宽带 (UWB) Ka 波段平板天线
  • 批准号:
    2110260
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Development and Study of Lattice-Derived Flat Band States
NSF-BSF:晶格衍生平带态的发展和研究
  • 批准号:
    2104964
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Investigating the topology of the electronic structure in flat-band systems
研究平带系统中电子结构的拓扑
  • 批准号:
    564896-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Creation of 2D flat band materials through concerted experimental and theoretical studies
通过协同实验和理论研究创建二维平带材料
  • 批准号:
    20H00328
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Electronic Phase Control and Development of Functionalities in Oxide Thin Films with Flat-band Structure
平带结构氧化物薄膜的电子相位控制和功能开发
  • 批准号:
    20K15168
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum simulation of novel superconducting phases in flat band systems using optical lattices
使用光学晶格对平带系统中新型超导相进行量子模拟
  • 批准号:
    19K03691
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flat Band Phase Transition in Gadolinium Gallium Garnet
钆镓石榴石中的平带相变
  • 批准号:
    2271133
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Search and creation of flat band compounds by first principles calculation
通过第一原理计算搜索和创建平带化合物
  • 批准号:
    19K03731
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interacting flat-band Majorana modes at surfaces of noncentrosymmetric superconductors
非中心对称超导体表面相互作用的平带马约拉纳模式
  • 批准号:
    320386177
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了