Nonlinear Photonic Topological Insulators

非线性光子拓扑绝缘体

基本信息

项目摘要

The aim of this proposal is to promote the understanding of new physical phenomena in disordered photonic topological materials, by using coupled optical waveguide systems. In particular, our theoretical and experimental research will address (1) Studies of topological nonlinear modes; (2) studies of novel lattice structures, in particular Lieb and Kagome geometries; (3) Studies of nonlinear wave dynamics in topological media with PT-symmetric lattice structure. Apart from revealing new and fundamental scientific knowledge, which is based on our sophisticated approach of using a highly controllable optical system (i.e., arrays of evanescently coupled waveguides), our results will have immediate technological significance, as they can be used in tele-communication and photonic data processing. We will take advantage of our superior fabrication technology that allows the individual addressing of numerous physical questions. We will combine the experimental work with theoretical analysis, in order to explain our results thoroughly and optimize device performance.The objectives of the proposed work are: (1) We will demonstrate, for the first time in any physical system, topological nonlinear edge modes and a topological soliton; (2) We will investigate, theoretically and experimentally, the impact of geometry on the formation of linear and nonlinear topological modes; (3) We will analyze the formation of solitons ad nonlinear topological edge modes in PT-symmetric photonic media, in theory and experiment. We will determine the regime of existence of such solitons, determine their stability and dynamical properties.
本研究的目的是利用耦合光波导系统来促进对无序光子拓扑材料中新物理现象的理解。特别是,我们的理论和实验研究将解决(1)拓扑非线性模式的研究;(2)新的晶格结构,特别是Lieb和Kagome几何的研究;(3)PT对称晶格结构的拓扑介质中的非线性波动动力学的研究。除了揭示新的和基础的科学知识,这是基于我们使用高度可控的光学系统(即,阵列的渐逝耦合波导),我们的结果将有直接的技术意义,因为它们可以用于远程通信和光子数据处理。我们将利用我们卓越的上级制造技术,可以单独解决许多物理问题。我们将联合收割机的实验工作与理论分析相结合,以充分解释我们的结果并优化器件性能,我们的目标是:(1)首次在任何物理系统中证明拓扑非线性边缘模和拓扑孤子;(2)我们将从理论和实验上研究几何形状对线性和非线性拓扑模式形成的影响;(3)从理论和实验上分析了PT对称光子介质中孤子和非线性拓扑边缘模的形成。我们将确定这种孤子的存在状态,确定它们的稳定性和动力学性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Szameit, Ph.D.其他文献

Professor Dr. Alexander Szameit, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Szameit, Ph.D.', 18)}}的其他基金

3D Quantum Random Walks in Laser-Written Waveguide Structures
激光写入波导结构中的 3D 量子随机游走
  • 批准号:
    413469995
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Radially accelerating light waves
径向加速光波
  • 批准号:
    329130931
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multi-Path Interference Tests of Quantum Mechanics
量子力学的多路干涉测试
  • 批准号:
    282462986
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Emulation of the Graphene structure using photonics
使用光子学模拟石墨烯结构
  • 批准号:
    270107438
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
  • 批准号:
    22H00298
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Topological Photonic Insulators in Silicon Nanophotonics
硅纳米光子学中的拓扑光子绝缘体
  • 批准号:
    558491-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Silicon Topological Photonic Platform for Photonic Integrated Circuits
用于光子集成电路的硅拓扑光子平台
  • 批准号:
    RGPIN-2022-03427
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Topological Photonic Insulators in Silicon Nanophotonics
硅纳米光子学中的拓扑光子绝缘体
  • 批准号:
    558491-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Encapsulated perovskite in NiO nanotube for topological meta-photonic devices
用于拓扑超光子器件的 NiO 纳米管封装钙钛矿
  • 批准号:
    2128367
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study on unidirectional-emitting photonic-crystal lasers based on topological photonics
基于拓扑光子学的单向发射光子晶体激光器研究
  • 批准号:
    21F20356
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topological Photonic Crystal Fibres
拓扑光子晶体光纤
  • 批准号:
    2440013
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Topological polariton states in photonic lattices
光子晶格中的拓扑极化子态
  • 批准号:
    2263727
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Topological Engineering for Active Photonic Structures and Devices
职业:有源光子结构和器件的拓扑工程
  • 批准号:
    1846766
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Photonic topological insulators and spin transport for on-chip optical isolators
片上光隔离器的光子拓扑绝缘体和自旋输运
  • 批准号:
    502209-2017
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了