Validated Models of MapReduce Scaling
MapReduce 扩展的验证模型
基本信息
- 批准号:389207087
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of the VaMoS project is to bridge the gap between systems-oriented research and queueing theoretic works on parallel systems to create models which reflect the performance of real systems and their scaling behavior. This document reports on the first phase of this project, and proposes an extension to the project with a work program that builds on the successes and developments in the field over the last few years.During the first phase of the VaMoS project we performed wide-ranging, experimentally inspired work on parallel systems. We investigated the effects of job locality, analyzed traces from real clusters, investigated the performance benefits and trade-offs of finer task granularity both theoretically and experimentally, and conducted experiments and developed models for parallel systems with barriers, as are often needed when parallelizing machine learning workloads. This work involved implementation or extension of several software packages which we have publicly released.Our proposed project extension focuses mainly on parallel systems with barriers. Typically this means that jobs are divided into tasks which will be serviced in parallel by a cluster of workers, but that the tasks are constrained to start, and possibly complete, simultaneously. There may also be intermediate synchronization points. This type of constraint is common in machine learning workloads, and support for barrier execution mode has very recently been added to some map-reduce engines in order to support these types of workloads. These barrier constraints have major performance implications, because they can force workers to sit idle, waiting for a single long-running task to finish. In the first phase of the project we developed analytical performance bounds for basic configurations of these types of systems. To connect our results with real systems we need to answer a number of questions about how parallel systems scale under multi-barrier workloads, how they handle a heterogeneous stream of barrier-containing jobs, and how multi-barrier workloads can be modeled. We also need to address certain implementation problems involving dynamic manipulation of a job's degree of parallelism, and whether scheduling optimizations required to support extremely fine task granularity can be useful in parallel processing of streaming data.
VaMoS项目的目标是弥合面向系统的研究与并行系统的理论工作之间的差距,以创建反映真实的系统性能及其缩放行为的模型。本文报告了该项目的第一阶段,并提出了一个扩展项目的工作计划,该计划建立在过去几年该领域的成功和发展的基础上。在VaMoS项目的第一阶段,我们在并行系统上进行了广泛的实验性工作。我们研究了作业局部性的影响,分析了来自真实的集群的痕迹,从理论和实验上研究了更精细的任务粒度的性能优势和权衡,并进行了实验,并为具有障碍的并行系统开发了模型,这是并行化机器学习工作负载时经常需要的。这项工作涉及的实施或扩展的几个软件包,我们已经公开发布。我们建议的项目扩展主要集中在并行系统的障碍。典型地,这意味着作业被划分为任务,这些任务将由一组工作者并行地服务,但是这些任务被限制为同时开始,并且可能同时完成。还可以存在中间同步点。这种类型的约束在机器学习工作负载中很常见,并且最近已经将对屏障执行模式的支持添加到一些map-reduce引擎中,以支持这些类型的工作负载。这些屏障约束具有重要的性能影响,因为它们可以迫使工作者闲置,等待一个长时间运行的任务完成。在项目的第一阶段,我们开发了这些类型的系统的基本配置的分析性能界限。为了将我们的结果与真实的系统联系起来,我们需要回答一些问题,例如并行系统如何在多屏障工作负载下扩展,它们如何处理包含屏障的作业的异构流,以及如何对多屏障工作负载进行建模。我们还需要解决某些实现问题,涉及动态操纵作业的并行度,以及调度优化所需的支持极细的任务粒度,可以在流数据的并行处理是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Markus Fidler其他文献
Professor Dr.-Ing. Markus Fidler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Markus Fidler', 18)}}的其他基金
FeelMaTyC (Feedback-less Machine-Type Communication)
FeelMaTyC(无反馈机器类型通信)
- 批准号:
329885056 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
A Probabilistic Network Calculus Approach to Measurement-based Bandwidth Estimation
基于测量的带宽估计的概率网络演算方法
- 批准号:
77698748 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Statistische Leistungsschranken für Computernetzwerke und Kommunikationssysteme
计算机网络和通信系统的统计性能障碍
- 批准号:
5441342 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Age- and Deviation-of-Information of Signal-agnostic and Signal-aware Sensor Sampling in Networked Monitoring
网络监控中信号不可知和信号感知传感器采样的信息年龄和偏差
- 批准号:
520006080 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
- 批准号:
2608661 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant