Exotic correlated phases in oxide two-dimensional electron systems at ultra-low temperature

超低温氧化物二维电子系统中的奇异相关相

基本信息

项目摘要

We outline a study of correlation and spin physics of electrons which are confined to two dimensions at a high quality MgZnO/ZnO crystalline interface. This system has attracted attention recently as its quality now rivals that of the best semiconductor materials, and the fractional quantum Hall physics it displays may be beneficial for quantum computation concepts based on topological properties of carriers. We aim to study its characteristics at ultra-low temperatures (T < 10mK); a regime which remains unexplored. Some possible manifestations of correlation physics include ferromagnetism, where electron spins align spontaneously, nematicity, where particles arrange into spatially non-uniform patterns and superconductivity, where current may pass without energy dissipation. These phenomena have been studied in other correlated systems, for example high temperature superconductors or heavy Fermion systems. Their observation in high quality two-dimensional electron systems however remains elusive and may aid in resolving outstanding problems.Previous studies of the MgZnO/ZnO system have been limited to temperatures available in standard commercial cryogenic equipment (T > 20 mK). Here we propose significant modification of such infrastructure as to achieve ultra-low temperatures of T < 10 mK. For this, we plan to develop and implement an enclosure which contains liquefied pure 3He at a temperature of ~ 5 mK, in which the sample is immersed. Further deployment of heat exchangers connected to the sample enables access to the ultra-low temperature regime. The goal is to suppress thermal fluctuations which mask the fragile correlation effects which are present in the system. At ultra-low temperatures we plan to explore the electrical characteristics of these samples through sensitive transport techniques. The resistance will be studied as a function of temperature, magnetic field, charge density and crystal direction. All these experimental degrees of freedom are essential knobs for revealing the nature of the electronic ground state. A key aspect of transport measurements is exploring the spin polarization of the samples while changing the charge density with the electric field effect. We can control this spin polarization by rotating the sample in a magnetic field, allowing its accurate quantification. We will build on previous work which identified an increase at low densities, indicating the approach to a quantum critical state where interaction effects dominate. Finally, we envisage complementary means of probing the electron interaction effects through non-equilibrium resonance methods. This will involve illuminating the sample with radiation in the microwave region of the electromagnetic spectrum, which provides photons of energies in resonance with typical scales encountered in semiconductors. Exploring the frequency dependence of these resonances will provide quantitative spectroscopic results to support observations made in transport.
我们概述了在高质量MgZnO/ZnO晶体界面上二维电子的相关和自旋物理的研究。该系统最近引起了人们的关注,因为它的质量现在可以与最好的半导体材料相媲美,并且它显示的分数量子霍尔物理可能有利于基于载流子拓扑特性的量子计算概念。我们的目标是研究其在超低温(T < 10mK)下的特性;一个尚未被探索的政权。相关物理的一些可能表现包括铁磁性(电子自旋自发排列),向列性(粒子排列成空间非均匀模式)和超导性(电流可以在没有能量耗散的情况下通过)。这些现象已经在其他相关系统中得到了研究,例如高温超导体或重费米子系统。然而,它们在高质量二维电子系统中的观察仍然难以捉摸,可能有助于解决突出的问题。先前对MgZnO/ZnO体系的研究仅限于标准商用低温设备(T > 20 mK)的温度。在这里,我们建议对这些基础设施进行重大修改,以实现T < 10 mK的超低温。为此,我们计划开发并实现一个包含液化纯3He的外壳,温度为~ 5 mK,样品浸泡在其中。进一步部署与样品相连的热交换器可以进入超低温状态。目标是抑制热波动,因为热波动掩盖了系统中存在的脆弱相关效应。在超低温下,我们计划通过敏感的传输技术来探索这些样品的电特性。我们将研究电阻与温度、磁场、电荷密度和晶体方向的关系。所有这些实验自由度都是揭示电子基态本质的关键。输运测量的一个关键方面是在电场效应下改变电荷密度时,探索样品的自旋极化。我们可以通过在磁场中旋转样品来控制这种自旋极化,从而实现其精确量化。我们将在先前的工作的基础上确定低密度下的增加,这表明了相互作用效应占主导地位的量子临界态的方法。最后,我们设想了通过非平衡共振方法探测电子相互作用效应的补充手段。这将涉及用电磁波谱的微波区域的辐射照射样品,这将提供与半导体中遇到的典型尺度共振的能量光子。探索这些共振的频率依赖性将提供定量的光谱结果,以支持在传输中进行的观测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Alexander Boris, since 6/2020其他文献

Dr. Alexander Boris, since 6/2020的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

共振价键理论及其在强关联电子体系中的应用
  • 批准号:
    11174364
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
  • 批准号:
    2238748
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Disorder and the Emergence of Inhomogeneous Phases in Strongly Correlated Electron Systems
强相关电子系统中的无序和非均匀相的出现
  • 批准号:
    2231821
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
  • 批准号:
    23H01114
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Engineering Strongly Correlated Quantum Phases Through Symmetry Breaking in GNRs
通过 GNR 对称性破缺设计强相关量子相
  • 批准号:
    2203911
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
  • 批准号:
    2103842
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
  • 批准号:
    2104036
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
  • 批准号:
    2103731
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical studies of superconducting states with multiple phases in strongly correlated electron materials
强相关电子材料多相超导态的理论研究
  • 批准号:
    21K03455
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Study of Novel Quantum Phases and Criticality in Multipolar Kondo Materials
多极近藤材料中新型量子相和临界性的实验研究
  • 批准号:
    20F20028
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Experimental study of topological phases in strongly correlated system
强相关系统拓扑相的实验研究
  • 批准号:
    20F20315
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了