Online Scene Reconstruction and Understanding
在线场景重构与理解
基本信息
- 批准号:392037563
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
3D scenes are the result of digitizing real-world environments. In comparison to two-dimensional visual media such as images and videos, 3D scenes carry much richer free view-point information and they can capture spatial relations between objects even if they cannot be seen from the same vantage point. This makes 3D scene representations useful in a wide range of applications where location- and pose-dependent information needs to be retrieved, e.g. for autonomous vehicles or mobile augmented reality. While there have been considerable advances in 3D measurement technology as well as significant progress in efficient 3D reconstruction algorithms, the precision and quality of 3D scenes captured with today s consumer-level (portable) equipment is still not fully satisfying, especially in online scenarios where the scene information needs to be continuously updated. Moreover low-level geometric representations (e.g. point clouds) of an environment are not sufficient in many applications such that segmentation and labeling algorithms are required which should be robust against noise, distortion, and incomplete data. Ultimately we want to let agents (humans or robots) interact with their environment which makes it necessary to analyse and model interaction patterns of the agents with (segmented and labeled) objects in a 3D scene. Our goals are:- To significantly improve the precision and quality of online 3D reconstructions from streams of multi-sensor raw data by using probabilistic formulations which carefully model all types of uncertainties in the capturing process.- To perform robust online 3D scene segmentation and labeling by exploiting dynamically changing context information. Again, probabilistic formulations but in addition also machine learning methods will be applied.- To analyze interaction patterns by developing algorithms for robust hand tracking and gesture classification and by mining large repositories of 3D scenes and interaction records for data driven interaction modeling.
3D场景是现实世界环境数字化的结果。与图像和视频等二维视觉媒体相比,3D场景具有更丰富的自由视点信息,即使无法从同一Vantage位置看到物体,它们也可以捕获物体之间的空间关系。这使得3D场景表示在需要检索位置和姿态相关信息的广泛应用中是有用的,例如用于自主车辆或移动的增强现实。虽然3D测量技术已经取得了相当大的进步,高效的3D重建算法也取得了显著的进步,但使用当今消费级(便携式)设备捕获的3D场景的精度和质量仍然不能完全令人满意,特别是在场景信息需要不断更新的在线场景中。此外,在许多应用中,环境的低级几何表示(例如,点云)是不够的,使得需要分割和标记算法,其应该对噪声、失真和不完整数据具有鲁棒性。最终,我们希望让代理(人类或机器人)与他们的环境进行交互,这使得有必要分析和建模代理与3D场景中(分割和标记)对象的交互模式。我们的目标是:-通过使用概率公式,在捕获过程中仔细建模所有类型的不确定性,显着提高多传感器原始数据流的在线3D重建的精度和质量。通过利用动态变化的上下文信息来执行鲁棒的在线3D场景分割和标记。同样,概率公式,但此外也将应用机器学习方法。通过开发鲁棒的手部跟踪和手势分类算法以及挖掘大型3D场景和交互记录存储库以进行数据驱动的交互建模来分析交互模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Leif Kobbelt其他文献
Professor Dr. Leif Kobbelt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Leif Kobbelt', 18)}}的其他基金
Stress oriented folded structures - an optimized light weight construction principle
应力导向折叠结构 - 优化的轻质结构原理
- 批准号:
269321250 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Robuste Übertragung und adaptive Darstellung komplexer 3D-Modelle und 3D-Animationen zur Integration in digitale Dokumente
复杂 3D 模型和 3D 动画的稳健传输和自适应显示,以便集成到数字文档中
- 批准号:
5243042 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
Deep Shape Representation for Shape Analysis, Modeling, and Reconstruction
用于形状分析、建模和重建的深度形状表示
- 批准号:
449823330 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Surface Mesh Generation for Generalized FEM-Techniques
广义有限元技术的表面网格生成
- 批准号:
529267700 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
CAREER: Sparse Sampling and Reconstruction for Rendering Through Per-Scene Optimization
职业:通过每场景优化进行渲染的稀疏采样和重建
- 批准号:
2238193 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Multi-view passive stereo for efficient three-dimensional (3D) scene reconstruction
用于高效三维 (3D) 场景重建的多视图被动立体
- 批准号:
545869-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Multi-view passive stereo for efficient three-dimensional (3D) scene reconstruction
用于高效三维 (3D) 场景重建的多视图被动立体
- 批准号:
545869-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
3D human tracking and scene reconstruction for audio-visual AR/VR
视听 AR/VR 的 3D 人体跟踪和场景重建
- 批准号:
2480933 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Handling Deformable Objects in 3D Scene Reconstruction via Spectral Shape Theory
通过光谱形状理论处理 3D 场景重建中的可变形对象
- 批准号:
510941-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Efficient Active Online Learning for 3D Reconstruction and Scene Understanding
用于 3D 重建和场景理解的高效主动在线学习
- 批准号:
260350367 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Reconstruction of Educational Program make the use of the Original Care-Methods at the Clinical Scene of the Geriatric Hospital
利用老年医院临床现场原有的护理方法重建教育项目
- 批准号:
26463465 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the common people faith of the RISSHAKUJI and reconstruction of the scene
立石寺民众信仰阐释及场景还原
- 批准号:
22720293 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)