Deep Shape Representation for Shape Analysis, Modeling, and Reconstruction
用于形状分析、建模和重建的深度形状表示
基本信息
- 批准号:449823330
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Digital 3D models are essential in a wide spectrum of diverse applications ranging from industrial design, digital media and entertainment to virtual reality, and 3D printing. For traditional 3D model generation, users have to invest a lot of time on professional CAD software and/or need to acquire expensive equipment such as laser scanners. With the increasing availability of large 3D model repositories on the internet in recent years, a paradigm shift becomes feasible from geometric design to data driven approaches where an intelligent modeling system supports the user by leveraging (statistical) knowledge that has been derived from pre-existing designs. Recent advances in deep learning are quite promising and nourish the hope that similar breakthroughs can be expected for geometric tasks. However, 3D models are very different from 2D images or videos in a number of aspects. 3D models (volumetric or B-rep) can have a complex topology and structure, details and features across several orders of magnitude, and auxiliary attributes like textures associated. Established geometry representations for deep learning applications do not support all of these aspects simultaneously. Therefore, ICT-CAS and RWTH intend to thoroughly address this issue in an international collaboration. Specifically:(1) We will investigate a novel representation of 3D geometry that combines hierarchical composition (structure) with geometry deformation (shape) and attribute mapping (appearance). The representation will be suitable for efficient and effective processing with deep neural networks.(2) For this representation we will develop a number of fundamental low-level operations like segmentation and classification, shape abstraction and matching as well as symmetry analysis.(3) The fundamental operations will allow us to solve challenging high level tasks like single view reconstruction and sophisticated (interactive) data driven 3D modeling tools which support the user by interpreting the user's intention and creating plausible 3D models in a data driven manner on the basis of (statistical) knowledge derived from large repositories of objects.
数字3D模型在从工业设计、数字媒体和娱乐到虚拟现实和3D打印的各种应用中至关重要。对于传统的3D模型生成,用户必须在专业CAD软件上投入大量时间和/或需要购买昂贵的设备,如激光扫描仪。随着近年来互联网上大型3D模型库的可用性不断增加,从几何设计到数据驱动方法的范式转变变得可行,其中智能建模系统通过利用从预先存在的设计中获得的(统计)知识来支持用户。深度学习的最新进展非常有希望,并希望几何任务也能取得类似的突破。然而,3D模型在许多方面与2D图像或视频非常不同。3D模型(体积或B-rep)可以具有复杂的拓扑和结构,跨越几个数量级的细节和特征,以及相关的纹理等辅助属性。针对深度学习应用的已建立的几何表示不能同时支持所有这些方面。因此,ICT-CAS和RWTH打算通过国际合作彻底解决这个问题。具体来说:(1)我们将研究一种新的表示三维几何,结合层次组成(结构)与几何变形(形状)和属性映射(外观)。该表示将适用于深度神经网络的高效和有效处理。(2)对于这种表示,我们将开发一些基本的低级操作,如分割和分类,形状抽象和匹配以及对称性分析。(3)基本操作将使我们能够解决具有挑战性的高级任务,如单视图重建和复杂的(交互式)数据驱动的3D建模工具,这些工具通过解释用户的意图并基于来自大型对象存储库的(统计)知识以数据驱动的方式创建合理的3D模型来支持用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Leif Kobbelt其他文献
Professor Dr. Leif Kobbelt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Leif Kobbelt', 18)}}的其他基金
Online Scene Reconstruction and Understanding
在线场景重构与理解
- 批准号:
392037563 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Stress oriented folded structures - an optimized light weight construction principle
应力导向折叠结构 - 优化的轻质结构原理
- 批准号:
269321250 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Robuste Übertragung und adaptive Darstellung komplexer 3D-Modelle und 3D-Animationen zur Integration in digitale Dokumente
复杂 3D 模型和 3D 动画的稳健传输和自适应显示,以便集成到数字文档中
- 批准号:
5243042 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
Surface Mesh Generation for Generalized FEM-Techniques
广义有限元技术的表面网格生成
- 批准号:
529267700 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
中医药协同SHAPE-T细胞治疗晚期胰腺癌的临床研究和免疫评价
- 批准号:2024PT012
- 批准年份:2024
- 资助金额:17.5 万元
- 项目类别:省市级项目
相似海外基金
Formation Process of Abstract Shape Representation in Object Perception
物体感知中抽象形状表征的形成过程
- 批准号:
21K12615 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic spline geometry: towards algorithmic shape representation
代数样条几何:走向算法形状表示
- 批准号:
EP/V012835/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
3-dimensional representation of mouse movement and rapid interaction with cortical brain activity to describe and shape behavior to improve outcome from stroke: insights from real and synthetic data approaches.
小鼠运动的 3 维表示以及与皮质大脑活动的快速交互,以描述和塑造行为以改善中风的结果:来自真实和合成数据方法的见解。
- 批准号:
451251 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
- 批准号:
10646213 - 财政年份:2019
- 资助金额:
-- - 项目类别:
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
- 批准号:
10023935 - 财政年份:2019
- 资助金额:
-- - 项目类别:
The role of shape and texture within the neural representation of faces.
形状和纹理在面部神经表征中的作用。
- 批准号:
2280359 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Early representation of 3D volumetric shape in visual object processing
视觉对象处理中 3D 体积形状的早期表示
- 批准号:
10412966 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Generation of Intermediate Representation of Shape based on Figure-Ground Segregation
基于图地分离的形状中间表示的生成
- 批准号:
17H01754 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mapping the representation of shape dimensions across the visual hierarchy
在视觉层次结构中映射形状尺寸的表示
- 批准号:
8580177 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research on the source signal recovery and shape image reconstruction from data with incomplete information based on sparse representation
基于稀疏表示的不完全信息数据源信号恢复与形状图像重建研究
- 批准号:
24500280 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)