New Perspectives in Strongly Interacting Systems: preparing for quantum gauge simulators.

强相互作用系统的新视角:为量子规范模拟器做准备。

基本信息

  • 批准号:
    392051989
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

A first-principles study of the non-perturbative physics in strongly interacting systems is a challenging field of research. It impacts a wide variety of areas, from new physics beyond the Standard Model of particle physics, to Quantum Chromodynamics (QCD), and even to astrophysical objects, such as neutron stars. Development of new algorithms based on the better understanding of the system helps in improved applicability of Monte Carlo methods. Even so, many interesting problems, particularly that of real-time evolution, are beyond the scope of present numerical techniques, and need new methods to make progress. The existing tools still play a crucial role in order to benchmark the new methods. Quantum simulation is a new method, which has rapidly developed in the past two decades. Quantum simulators are special purpose quantum computers to emulate specific physical systems, realized with cold atoms in optical lattices or ions trapped in ion traps. Once they work, they will by far outperform their classical counterparts for certain problems. Several such examples already exist in condensed matter physics and are being increasingly developed for particle physics applications. Together with existing theoretical and Monte Carlo methods, they have a great potential for increasing our understanding of strongly correlated systems. This project will consider some quantum simulators relevant for QCD-related physics. Certain lattice gauge theories (called quantum link models) with finite dimensional Hilbert spaces are ideal candidates to be implmented in optical lattices. The research will focus on the quantum simulation of the considered models, together with the development of classical simulation algorithmsfor benchmarking these quantum simulators, particularly using the static properties. The study of dynamical properties, like real-time evolution, can then be studied with quantum simulators. Realization of these models in the laboratories are only approximate. The classical algorithms developed will account for this. Additionally, this project will study whether continuum field theories can be realized with the quantum link models. This has crucial impact on the progress of quantum simulators for continuum gauge theories. Moreover, the same classical simulation algorithms can address some aspects of conformal field theories in dimensions d > 2. This can provide an independent check of new numerical and analytical methods (such as the conformal bootstrap). The excellent local scientific environment at the Humboldt University and DESY Zeuthen, and close contacts of the PI with atomic physicists in Univeristy of Innsbruck, Austria are expected to contribute to the success of the proposed project and make a significant impact on the aforementioned fields.
强相互作用系统中非微扰物理的第一性原理研究是一个具有挑战性的研究领域。它影响了广泛的领域,从粒子物理学标准模型之外的新物理学,到量子色动力学(QCD),甚至到天体物理学对象,如中子星。在更好地理解系统的基础上开发新的算法有助于提高蒙特卡罗方法的适用性。即便如此,许多有趣的问题,特别是实时演化,超出了目前的数值技术的范围,需要新的方法来取得进展。现有的工具仍然发挥着至关重要的作用,以基准的新方法。量子模拟是近二十年来迅速发展起来的一种新方法。量子模拟器是模拟特定物理系统的专用量子计算机,由光学晶格中的冷原子或离子阱中捕获的离子实现。一旦它们起作用,它们在某些问题上的表现将远远超过经典的对应物。在凝聚态物理学中已经存在几个这样的例子,并且正在越来越多地开发用于粒子物理学应用。与现有的理论和蒙特卡罗方法一起,它们具有很大的潜力,可以增加我们对强相关系统的理解。这个项目将考虑一些与QCD相关的物理学相关的量子模拟器。某些有限维希尔伯特空间的格点规范理论(称为量子链模型)是实现光格点的理想候选者。该研究将集中在所考虑的模型的量子模拟,以及经典模拟算法的开发,用于对这些量子模拟器进行基准测试,特别是使用静态特性。对动力学性质的研究,如实时进化,可以用量子模拟器来研究。 这些模型在实验室中的实现只是近似的。开发的经典算法将解释这一点。此外,本计画也将研究连续统场论是否可以用量子连结模型来实现。这对连续统规范理论的量子模拟器的进展有着至关重要的影响。此外,相同的经典模拟算法可以解决维度d > 2的共形场论的某些方面。这可以提供新的数值和分析方法(如共形引导)的独立检查。 洪堡大学和DESY Zeuthen优秀的本地科学环境,以及PI与奥地利因斯布鲁克大学原子物理学家的密切联系,预计将有助于拟议项目的成功,并对上述领域产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Debasish Banerjee其他文献

Dr. Debasish Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
  • 批准号:
    AH/Y007492/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
  • 批准号:
    24K16414
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
  • 批准号:
    24K10701
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
  • 批准号:
    24K03155
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Black British History: Local Perspectives
英国黑人历史:当地视角
  • 批准号:
    AH/Y000765/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The development and evaluation of a theatrical method to take others' perspectives: parent-child communication
换位思考的戏剧方法的发展与评价:亲子沟通
  • 批准号:
    23KJ2239
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
  • 批准号:
    AH/Y00759X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
  • 批准号:
    2338091
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
  • 批准号:
    2237138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了