Construction and decoding of convolutional codes over the erasure channel

擦除通道上卷积码的构造和解码

基本信息

  • 批准号:
    392752124
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Coding theory is dealing with error correction during data transmission using error correcting codes. The principle of an error correcting code is to add redundancy to a message, in order to make it possible to correct transmission errors or to reconstruct lost data.The aim of the project is to develop new constructions and efficient decoding algorithms for maximum distance profile (MDP) convolutional codes over the erasure channel. When using this channel, a transmitted symbol is either received correctly or gets lost. Moreover, special subclasses of MDP convolutional codes, the reverse-MDP and complete-MDP convolutional codes should be considered. These codes have additional properties, which are of advantage for decoding. The motivation for this project is provided by the necessity for decoding with least possible delay in applications like internet traffic and in particular, video streaming.In the first part of the project, I want to develop general constructions for reverse-MDP and complete-MDP convolutional codes, where for complete-MDP convolutional codes, one has to prove their existence for all code parameters first. Up to now there are only constructions for MDP convolutional codes over fields of large size, which makes decoding algorithms very complex. Therefore, another aim is to develop constructions of MDP convolutional codes for small field sizes and to obtain a bound for the necessary field size such that a MDP convolutional code exists.In the second part of the project, I plan to approach the development of efficient decoding algorithms for MDP convolutional codes over the erasure channel in two ways: firstly, by considering the parity-check matrix and secondly, by using the systems-theoretic representation of a convolutional code. For the second way, I will use that each convolutional code could be described by a linear system over a finite field.Finally, I will investigate if the class of MDP convolutional codes is capable to achieve Shannon capacity over the q-ary erasure channel without memory, i.e. the aim is to find codes with possibly large transmission rates and possibly small error probabilities. When using the above channel, symbols from a finite field with q elements are transmitted and the erasure probability of a symbols is independent of previous symbols.
编码理论是利用纠错码处理数据传输过程中的纠错问题。纠错码的原理是在信息中增加冗余,以便纠正传输错误或重建丢失的数据。该项目的目的是开发擦除信道上最大距离轮廓(MDP)卷积码的新结构和有效的解码算法。当使用此信道时,传输的符号要么被正确接收,要么丢失。 此外,还应考虑MDP卷积码的特殊子类,即反向MDP卷积码和完全MDP卷积码。这些代码具有额外的属性,这是有利于解码。该项目的动机是在互联网流量,特别是视频流等应用中以尽可能少的延迟进行解码的必要性。在项目的第一部分,我想开发反向MDP和完整MDP卷积码的一般构造,对于完整MDP卷积码,必须首先证明其所有代码参数的存在。到目前为止,MDP卷积码的构造都是在大尺寸的域上进行的,这使得译码算法非常复杂。因此,另一个目标是开发小字段大小的MDP卷积码的结构,并获得必要的字段大小的界限,以便MDP卷积码存在。在该项目的第二部分,我计划以两种方式开发擦除信道上的MDP卷积码的有效解码算法:首先通过考虑奇偶校验矩阵,其次通过使用卷积码的系统理论表示。对于第二种方式,我将使用每个卷积码可以由有限域上的线性系统来描述。最后,我将研究这类MDP卷积码是否能够在没有记忆的q元擦除信道上实现香农容量,即目标是找到具有可能大的传输速率和可能小的错误概率的代码。当使用上述信道时,传输来自具有q个元素的有限域的符号,并且符号的擦除概率与先前的符号无关。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complete j-MDP Convolutional Codes
On the left primeness of some polynomial matrices with applications to convolutional codes
一些多项式矩阵的左素性及其在卷积码中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Julia Lieb其他文献

Professorin Dr. Julia Lieb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Julia Lieb', 18)}}的其他基金

Convolutional Codes - A generalized view on coding theory and applications
卷积码 - 编码理论和应用的概括观点
  • 批准号:
    513811367
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

解码精母细胞特异5’UTR元件调控DNA损伤修复基因MSH5翻译挽救减数分裂障碍的研究
  • 批准号:
    82371607
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
  • 批准号:
    2337322
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Decoding functional glycan biosynthesis
解码功能性聚糖生物合成
  • 批准号:
    BB/Y000102/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
PROTSENS Rethinking Alternative PROTein Extraction: Decoding SENsory-Protein Extraction Relationships
PROTSENS 重新思考替代性蛋白质提取:解码感觉-蛋白质提取关系
  • 批准号:
    EP/Z000785/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Decoding the brain network of memory formation
解码记忆形成的大脑网络
  • 批准号:
    DP240101321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Decoding microtubule remodelling in sperm production
解码精子生成中的微管重塑
  • 批准号:
    DP240100815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Decoding the Obese Duodenum
解码肥胖十二指肠
  • 批准号:
    MR/Y013980/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Decoding the Code of Glycan-Collectin Interactions: Computational Engineering of Surfactant Proteins for Tailored Glycan Recognition
职业:解码聚糖-收集素相互作用的密码:用于定制聚糖识别的表面活性剂蛋白的计算工程
  • 批准号:
    2338401
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multi-layered decoding and therapeutic co-option of the metastatic checkpoint in human colorectal cancer
人类结直肠癌转移检查点的多层解码和治疗选择
  • 批准号:
    23K27677
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Decoding the structure and formation history of the Milky Way halo with non-equilibrium orbit-based models
用非平衡轨道模型解码银河系晕的结构和形成历史
  • 批准号:
    ST/X004066/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Decoding the complexity and natural variation of the mouse tissue glycoproteome
解码小鼠组织糖蛋白组的复杂性和自然变异
  • 批准号:
    24K17793
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了