Kernel Method and Bayes Estimation for Flexible Structural Models

柔性结构模型的核方法和贝叶斯估计

基本信息

  • 批准号:
    17J03208
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-26 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

本研究は、構造モデルと呼ばれる特有のモデルを用いた統計解析について、適応的解析という統計手法のフレームを開発した。近年、データの観測技術や保存技術の進歩により、従来の統計手法では解析できないデータが数多く収集されるようになった。このようなデータは、基礎学術領域から実社会に至るまで幅広い分野で登場している。しかしその特殊性から、低い精度や過大な計算コストなどの問題が発生し、解析の実用化は阻害されていた。本研究は、解析に用いる構造モデルの複雑性を調整する適応的解析という統計解析のフレームを用いて、解析の困難性を解決する統計手法を開発した。本研究の成果により、データ解析を用いる数多くの分野で、新しい解析手法が実用化されていくことが見込まれる。(a). テンソルデータの解析手法多次元配列をテンソルデータと呼び、3D画像やWebの関係性などを表現する。しかし次元の呪いと呼ばれる問題により、テンソルデータは非常に多くの要素数を持つため、その解析には常に計算的・理論的な困難がある。本研究は、テンソルデータを入力とする回帰問題や分解問題において、データの背後にある連続構造や低次元構造を適応的に抽出するアルゴリズムを提案し、精度の向上やそれまで不可能だったデータの欠損補完を可能にした。(b). 関数データの解析手法関数データとは連続した関数として扱われるデータを指す。関数データはベクトル表現を用いると連続性の情報が失われるため、その情報を保持したまま解析を行うことが困難である。本研究は、関数データを用いた回帰の問題を考え、滑らかさを適応的に調整する推定量や、その推定量の不確定性を評価できる信頼解析の方法を提案した。
This study is aimed at developing a statistical approach to the analysis and application of statistical techniques. In recent years, advances in measurement technology and preservation technology have been made, and recent statistical methods have been used to analyze and collect data. The basic academic field is divided into social and social fields. The particularity of analysis, low accuracy and excessive calculation result in the occurrence of problems, and the application of analysis is hindered. In this study, we developed a statistical method for resolving the complexity of structural analysis and statistical analysis. The results of this study are divided into several parts, and new analysis methods are used to analyze the data. (a). The resolution of 3D graphics is based on the multi-element arrangement, 3D graphics and Web relations. The number of elements in the problem is very large, and the analysis is often difficult. This study is based on the analysis of the problem, the analysis of the problem, the analysis of the problem behind the problem. (b). The analysis method of the number of related data is to connect the number of related data to the number of related data. The number of data is not enough to solve the problem. This paper proposes a method for estimating the uncertainty of the estimation and adjusting the uncertainty of the estimation

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm
  • DOI:
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Imaizumi;Takanori Maehara;K. Hayashi
  • 通讯作者:
    M. Imaizumi;Takanori Maehara;K. Hayashi
A simple method to construct confidence bands in functional linear regression
  • DOI:
    10.5705/ss.202017.0208
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    M. Imaizumi;Kengo Kato
  • 通讯作者:
    M. Imaizumi;Kengo Kato
PCA-based estimation for functional linear regression with functional responses
  • DOI:
    10.1016/j.jmva.2017.10.001
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Imaizumi;Kengo Kato
  • 通讯作者:
    M. Imaizumi;Kengo Kato
Statistical Estimation for Non-Smooth Functions by Deep Neural Network
深度神经网络对非光滑函数的统计估计
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今泉允聡;加藤賢悟;今泉允聡;Masaaki Imaizumi
  • 通讯作者:
    Masaaki Imaizumi
埋め込み距離によるノンパラメトリック多様体回帰(Nonparametric Regression for Manifold Data via Embedding Distance)
通过嵌入距离进行流形数据的非参数回归
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今泉允聡;矢野恵佑
  • 通讯作者:
    矢野恵佑
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

今泉 允聡其他文献

Statistical Analysis for Generative Adversarial Networks
生成对抗网络的统计分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sho Takase;Jun Suzuki;Masaaki Nagata;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;今泉 允聡;今泉 允聡;Masaaki Imaizumi
  • 通讯作者:
    Masaaki Imaizumi
Szemeredi分割による非滑らかな密度関数の推定
通过 Szemeredi 划分估计非光滑密度函数
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sho Takase;Jun Suzuki;Masaaki Nagata;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;今泉允聡;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;Masaaki Imaizumi;今泉 允聡;今泉 允聡;Masaaki Imaizumi;今泉 允聡;今泉 允聡;Masaaki Imaizumi;Masaaki Imaizumi;今泉 允聡;今泉 允聡;今泉 允聡;今泉 允聡;今泉 允聡;今泉 允聡;今泉 允聡;今泉 允聡
  • 通讯作者:
    今泉 允聡
多変量ガウス分布間回帰
多元高斯分布之间的回归
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岡野 遼;今泉 允聡
  • 通讯作者:
    今泉 允聡
深層学習の原理に挑む理論の試み
挑战深度学习原理的理论尝试
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hirata Hiroaki;Nunome Atsushi;今泉 允聡
  • 通讯作者:
    今泉 允聡
深層学習の原理に迫る
探讨深度学习的原理
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今泉 允聡
  • 通讯作者:
    今泉 允聡

今泉 允聡的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('今泉 允聡', 18)}}的其他基金

大自由度モデルの統計的理解と活用に向けた非スパース高次元統計学の理論開発
用于统计理解和利用大自由度模型的非稀疏高维统计理论发展
  • 批准号:
    24K02904
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
深層統計モデルによる科学的仮説検証のための非漸近推測理論の開発
使用深度统计模型开发用于科学假设检验的非渐近推理理论
  • 批准号:
    21K11780
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多次元な動的離散選択モデルの近似解法の研究
多维动态离散选择模型近似求解方法研究
  • 批准号:
    15J10206
  • 财政年份:
    2015
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

機械学習アルゴリズムを用いた敗血症性凝固線溶障害の早期予測モデルの開発
使用机器学习算法开发脓毒性凝血和纤溶性疾病的早期预测模型
  • 批准号:
    24K12133
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アニーリングと機械学習の融合による説明可能AI基盤の研究
结合退火和机器学习研究可解释的人工智能基础设施
  • 批准号:
    24KJ1081
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
機械学習による滑走路の離着陸容量の短期的予測手法に関する研究
基于机器学习的跑道起降能力短期预测方法研究
  • 批准号:
    24K07722
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
機械学習を用いた波形解析による高速中性子エネルギー測定法の技術開拓
利用机器学习进行波形分析的快中子能量测量方法的技术开发
  • 批准号:
    24K08298
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
調理シミュレーションと機械学習の融合および非接触計測による加熱制御システムの構築
结合烹饪模拟与机器学习和非接触测量构建加热控制系统
  • 批准号:
    24K05572
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
肝臓内酸素動態を含む透析低血圧発症予知モデルの構築:統計・機械学習分析による解析
构建预测透析低血压发作(包括肝内氧动态)的模型:使用统计和机器学习分析进行分析
  • 批准号:
    24K15796
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
臨床情報による高精度分娩進行予測モデルの開発: 機械学習の活用
利用临床信息开发高精度的分娩进展预测模型:利用机器学习
  • 批准号:
    24K13948
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新興感染症のシステマティック・レビューを機械学習を用いて簡易に実施するための研究
利用机器学习轻松对新发传染病进行系统评价的研究
  • 批准号:
    24K13518
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
独立成分分析を活用した信頼性の高い機械学習手法の構築
使用独立成分分析构建可靠的机器学习方法
  • 批准号:
    24K15093
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
学習過程情報に基づき理由を説明可能な高速論理型機械学習器の開発の提案
开发可根据学习过程信息解释原因的高速逻辑机器学习装置的提案
  • 批准号:
    24K15095
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了