Discrete Mathematics and its Applications
离散数学及其应用
基本信息
- 批准号:18J23484
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2018
- 资助国家:日本
- 起止时间:2018-04-25 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We developed efficient algorithms to solve some practical problems related to informatics. We proposed efficient algorithms to generate a substitution box for modern block ciphers in two papers accepted to be published. In a published paper, we proposed a new fast and efficient image encryption scheme that is independent of point computation over elliptic curves. In chemi-informatics, we proposed a model to infer chemical graphs with given property based on artificial neural network and integer linear programming and produced three papers. Then, we proposed algorithms based on dynamic programming to count and generate tree-like graphs with a given cycle rank. Finally, we characterized pairwise compatibility graphs based on which proposed algorithms to enumerate these graphs efficiently.
我们开发了有效的算法来解决一些与信息学相关的实际问题。我们在两篇即将发表的论文中提出了为现代分组密码生成替换框的有效算法。在一篇发表的论文中,我们提出了一种新的快速有效的图像加密方案,该方案独立于椭圆曲线上的点计算。在化学信息学方面,我们提出了一种基于人工神经网络和整数线性规划来推断具有给定性质的化学图的模型,并发表了三篇论文。然后,我们提出了基于动态规划的算法来计数并生成具有给定循环等级的树状图。最后,我们基于所提出的算法来描述成对兼容性图,以有效地枚举这些图。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Improved Integer Programming Formulation for Inferring Chemical Compounds with Prescribed Topological Structures
一种改进的整数规划公式,用于推断具有指定拓扑结构的化合物
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:J. Zhu;N. A. Azam;K. Haraguchi;L. Zhao;H. Nagamochi;T. Akutsu
- 通讯作者:T. Akutsu
Enumerating all pairwise compatibility graphs with a given number of vertices using linear programming
使用线性规划枚举具有给定数量顶点的所有成对兼容性图
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Masaki Waga;Ichiro Hasuo;Kohei Suenaga;糸数温子;Naveed Ahmed Azam
- 通讯作者:Naveed Ahmed Azam
Experimental results of a dynamic programming algorithm for generating chemical isomers based on frequency vectors
基于频率向量生成化学异构体的动态规划算法的实验结果
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Naveed Ahmed Azam;Jianshen Zhu;Ryota Ido;Hiroshi Nagamochi,Tatsuya Akutsu
- 通讯作者:Hiroshi Nagamochi,Tatsuya Akutsu
Counting tree-like graphs with a given number of vertices and self-loops
计算具有给定数量的顶点和自循环的树状图
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Masaki Waga;Etienne Andre;Atsuko ITOKAZU;Naveed Ahmed Azam
- 通讯作者:Naveed Ahmed Azam
A novel method for the inverse QSAR/QSPR based on artificial neural networks and mixed integer linear programming with guaranteed admissibility
基于人工神经网络和混合整数线性规划的保证可接受性的逆QSAR/QSPR新方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Masaki Waga;Eienne Andre;Atsuko ITOKAZU;Rachaya Chiewvanichakorn
- 通讯作者:Rachaya Chiewvanichakorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AZAM NAVEED AHMED其他文献
AZAM NAVEED AHMED的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elliptic curve analogues of arithmetic sequences
算术序列的椭圆曲线类似物
- 批准号:
573026-2022 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2021
- 资助金额:
$ 1.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2020
- 资助金额:
$ 1.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algorithms for determining supersingular elliptic curve endomorphism rings
确定超奇异椭圆曲线自同态环的算法
- 批准号:
544841-2019 - 财政年份:2019
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
Study and development of advanced elliptic curve cryptosystem
先进椭圆曲线密码体制的研究与开发
- 批准号:
19K11966 - 财政年份:2019
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2019
- 资助金额:
$ 1.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527578-2018 - 财政年份:2018
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
Active Attacks on FourQ-Based Hardware Implementations of Elliptic Curve Cryptosystems
对基于 FourQ 的椭圆曲线密码系统硬件实现的主动攻击
- 批准号:
529069-2018 - 财政年份:2018
- 资助金额:
$ 1.79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Elliptic Curve Computations
椭圆曲线计算
- 批准号:
527579-2018 - 财政年份:2018
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




