How does insulin signaling increase developmental success at high temperature? A biophysical and metabolic analysis

胰岛素信号如何提高高温下的发育成功率?

基本信息

项目摘要

Despite the importance of Drosophilids as agricultural pests and genetic workhorses in the lab, their response and acclimatization to environmental temperature variations are not well understood. Understanding the response to temperature is not only of basic biological interest, but also has important implications for how researchers work with and store this important model organism. Furthermore, as climate change alters temperature at a pace that largely prevents genomic adaptations, and expands geographical ranges of pests like Drosophila suzukii, the question how cold-blooded animals like Drosophila alter their physiology and behavior to thrive over a wide range of temperatures will be of strong relevance to control efforts.This proposed Research Unit will take a synergistic, multidisciplinary approach to studying this problem in Drosophila melanogaster and Drosophila suzukii, both in the laboratory and in the field. We will use state of the art microscopy and quantitative image analysis to investigate the how temperature influences the robustness and speed of growth and morphogenesis. We will combine cutting edge approaches in lipidomics with dietary manipulations to further elucidate the contribution of dietary lipids to Drosophila thermal behavior. We will quantify the role of chromatin dynamics as well as mitochondrial variation – both known to display striking temperature sensitivity – and investigate the role of metabolic changes mediated by insulin signaling. Finally, we will uncover seasonal variation of the microbiome in the field, and measure how it influences signaling, lipid composition and the viable temperature range. By fusing these different perspectives, our findings will reveal the combined roles of these interacting factors in the important problem of the acclimatization to temperature.
尽管果蝇作为农业害虫和实验室中的遗传工作者的重要性,但它们对环境温度变化的反应和适应性尚不清楚。了解对温度的反应不仅具有基本的生物学意义,而且对研究人员如何处理和储存这种重要的模式生物具有重要意义。此外,随着气候变化改变温度的速度在很大程度上阻止了基因组适应,并扩大了果蝇等害虫的地理范围,像果蝇这样的冷血动物如何改变其生理和行为以在广泛的温度范围内茁壮成长的问题将与控制工作密切相关。在实验室和现场,我们采用多学科方法在黑腹果蝇和铃木虫果蝇中研究这一问题。我们将使用最先进的显微镜和定量图像分析来研究温度如何影响生长和形态发生的鲁棒性和速度。我们将结合联合收割机在脂质组学与饮食操作的尖端方法,以进一步阐明饮食脂质果蝇的热行为的贡献。我们将量化染色质动力学以及线粒体变异的作用-这两个已知显示惊人的温度敏感性-并研究胰岛素信号介导的代谢变化的作用。最后,我们将揭示该领域微生物组的季节性变化,并测量它如何影响信号,脂质组成和可行的温度范围。通过融合这些不同的观点,我们的研究结果将揭示这些相互作用的因素在适应温度的重要问题的综合作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Marko Brankatschk, Ph.D., since 2/2020其他文献

Dr. Marko Brankatschk, Ph.D., since 2/2020的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Marko Brankatschk, Ph.D., since 2/2020', 18)}}的其他基金

Coordination Funds
协调基金
  • 批准号:
    396658176
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does EFR3 control insulin-stimulated plasma membrane dispersal of GLUT4?
EFR3 如何控制胰岛素刺激的 GLUT4 质膜扩散?
  • 批准号:
    BB/X005178/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Does a ketogenic diet impair metabolic health?
生酮饮食会损害代谢健康吗?
  • 批准号:
    10751471
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A workplace multilevel intervention to reduce sugary beverage intake: Can the Compulsive Eating Phenotype guide better treatment matching, and does it work through predicted mechanisms of action?
减少含糖饮料摄入量的工作场所多层次干预:强迫性饮食表型能否指导更好的治疗匹配,是否通过预测的作用机制发挥作用?
  • 批准号:
    10666314
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does Senescence Impair the Cardiovascular Benefits of Menopause Hormone Therapy?
衰老是否会损害更年期激素疗法对心血管的益处?
  • 批准号:
    10612102
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does Senescence Impair the Cardiovascular Benefits of Menopause Hormone Therapy?
衰老是否会损害更年期激素疗法对心血管的益处?
  • 批准号:
    10429132
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does age-dependent PFKFB3 down-regulation alter adipose tissue function
年龄依赖性 PFKFB3 下调是否会改变脂肪组织功能
  • 批准号:
    10563615
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does E4orf1 prevent further deterioration in Alzheimer's disease pathology in older mice
E4orf1是否可以防止老年小鼠阿尔茨海默病病理进一步恶化
  • 批准号:
    10491189
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Does post-transcriptional control of NLRP3 inflammasome activity impact development of type 1 diabetes?
NLRP3 炎性体活性的转录后控制是否会影响 1 型糖尿病的发展?
  • 批准号:
    10158125
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Does E4orf1 prevent further deterioration in Alzheimer's disease pathology in older mice
E4orf1是否可以防止老年小鼠阿尔茨海默病病理进一步恶化
  • 批准号:
    10303933
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Does post-transcriptional control of NLRP3 inflammasome activity impact development of type 1 diabetes?
NLRP3 炎性体活性的转录后控制是否会影响 1 型糖尿病的发展?
  • 批准号:
    10404093
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了