Combinatorial problems from an analytical point of view

从分析的角度来看组合问题

基本信息

项目摘要

This project is devoted to novel positivity properties emerging at the interface between analysis and combinatorics.Total positivity arose in connection with studies of mechanical systems and has applications to combinatorics, statistics, and complex analysis. Hankel-total positivity is a characteristic property of Stieltjes moment sequences, as was shown by Gantmacher and Krein. Flajolet's paper of 1980 introduced an important application of the Stieltjes continued fractions to combinatorics: he interpreted combinatorially the coefficients of the associated power series. Alan Sokal, the prospective host on this project, further identified many important sequences of combinatorial polynomials as coefficientwise Hankel-totally positive. In certain cases, a rigorous proof follows from the connection to continued fractions. In other cases, the verification needs more sophisticated tools and remains an open problem. Dealing with this problem is the first goal of this project.The second goal of this project is the study of positivity for a special class of formal power series. This class arises in such problems as the enumeration of connected graphs and the interaction of particles. From the analytical viewpoint, the goal consists in proving several empirically observed properties of zeros of such entire functions. This will include verification of Alan Sokal's conjectures on the simplicity of zeros and on the positivity of their Taylor coefficients with respect to the parameter.
这个项目致力于在分析和组合学的交界处出现新的正性性质。完全正性与机械系统的研究有关,并在组合学、统计学和复杂分析中得到应用。Hankel-全正性是Stieltjes矩序列的一个特征性质,正如Gantmacher和Krein所证明的那样。Flajolet在1980年的论文中介绍了Stieltjes连分式在组合学中的一个重要应用:他用组合的方法解释了相关幂函数的系数。艾伦·索卡尔,这个项目的潜在主持人,进一步证明了许多重要的组合多项式序列是系数方向的Hankel-全正的。在某些情况下,严格的证明来自于与连分式的联系。在其他情况下,核查需要更复杂的工具,仍然是一个悬而未决的问题。解决这个问题是本课题的第一个目标。本课题的第二个目标是研究一类特殊的形式幂函数级数的正性。这类问题出现在连通图的计数和粒子的相互作用等问题中。从分析的观点来看,目标在于证明这类整函数的零点的几个经验观察性质。这将包括对艾伦·索卡尔关于零点的简单性的猜想及其泰勒系数关于参数的正性的验证。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rigidity of the Hamburger and Stieltjes Moment Sequences
Hammer 和 Stieltjes 矩序列的刚性
  • DOI:
    10.1007/s00365-019-09469-y
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Dyachenko
  • 通讯作者:
    A. Dyachenko
On generalization of classical Hurwitz stability criteria for matrix polynomials
  • DOI:
    10.1016/j.cam.2020.113113
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Zhan;A. Dyachenko
  • 通讯作者:
    X. Zhan;A. Dyachenko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Alexander Dyachenko其他文献

Dr. Alexander Dyachenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Modeling and Analytical Approaches for Two-stage Assembly and Related Lot Streaming Problems
两阶段装配及相关批次流问题的新颖建模和分析方法
  • 批准号:
    2034503
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Real analytical and numerical approach to non-stationary problems of fluid dynamics
流体动力学非平稳问题的真实分析和数值方法
  • 批准号:
    15K04946
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Progressive development of network optimization algorithms and structure analytical methods with adaptation abilities for real world problems
逐步发展具有适应现实问题能力的网络优化算法和结构分析方法
  • 批准号:
    25350434
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytical and Numerical Study of Two Problems Arising in solid-Liquid Interaction
固液相互作用中两个问题的解析和数值研究
  • 批准号:
    1311983
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Combining Analytical and Numerical Approaches to Problems in Condensed Matter and Cold Atom Physics
结合分析和数值方法解决凝聚态和冷原子物理问题
  • 批准号:
    444451-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
  • 批准号:
    1160802
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spectral asymptotics on compact manifolds and related problems in analytical number theory
紧流形上的谱渐进及解析数论中的相关问题
  • 批准号:
    358779-2008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Analysis at the nanoscale:addressing key problems in plant sciences with advanced analytical techniques
纳米级分析:利用先进的分析技术解决植物科学的关键问题
  • 批准号:
    EP/I026584/1
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Spectral asymptotics on compact manifolds and related problems in analytical number theory
紧流形上的谱渐进及解析数论中的相关问题
  • 批准号:
    358779-2008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Analytical Methods For Certain Inverse Problems In Medical Imaging
医学成像中某些反问题的分析方法
  • 批准号:
    EP/H051309/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了