Study of noncommutative Hodge structures in mirror symmetry

镜像对称非交换Hodge结构的研究

基本信息

  • 批准号:
    26610008
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mirror Symmetry and Related Topics, Kyoto 2016
镜像对称及相关主题,京都 2016
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On the Gamma conjecture associated with toric flips
关于与环面翻转相关的伽玛猜想
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    入谷 寛
  • 通讯作者:
    入谷 寛
Orbifold Jacobian algebras for invertible polynomials
可逆多项式的 Orbifold 雅可比代数
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nose;M.;Atsushi Takahashi
  • 通讯作者:
    Atsushi Takahashi
On orbifold Jacobian algebras
关于轨道雅可比代数
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyamoto;Masahiko;Atsushi Takahashi;Masahiko Miyamoto;Hiroshi Iritani;小西 由紀子;Masahiko Miyamoto;Atsushi Takahashi;Hiroshi Iritani;Miyamoto Masahiko;Miyamoto Masahiko;Miyamoto Masahiko;Atsushi Takahashi
  • 通讯作者:
    Atsushi Takahashi
On entropies of autoequivalences on smooth projective varieties
关于光滑射影簇的自等价熵
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyamoto;Masahiko;Atsushi Takahashi;Masahiko Miyamoto;Hiroshi Iritani;小西 由紀子;Masahiko Miyamoto;Atsushi Takahashi;Hiroshi Iritani;Miyamoto Masahiko;Miyamoto Masahiko;Miyamoto Masahiko;Atsushi Takahashi;宮本雅彦;Miyamoto Masahiko;Atsushi Takahashi
  • 通讯作者:
    Atsushi Takahashi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takahashi Atsushi其他文献

Molecular Dynamics Simulation on Hydrogen Isotope Molecules Emitted from Amorphous Carbon
无定形碳释放氢同位素分子的分子动力学模拟
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai Kensuke;Tanikawa Chizu;Hirasawa Akira;Terao Chikashi;Kamatani Yoichiro;Takahashi Atsushi;Momozawa Yukihide;Hirata Makoto;Kubo Michiaki;Matsuda Koichi;Hiroaki Nakamura
  • 通讯作者:
    Hiroaki Nakamura
$q$-stability conditions and C^*-equivariant quantum cohomology for the local P^1
$q$-稳定性条件和 C^*-局部 P^1 的等变量子上同调
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikeda Akishi;Otani Takumi;Shiraishi Yuuki;Takahashi Atsushi;Kanako Oshiro;Akishi Ikeda;Akishi Ikeda;Kanako Oshiro;池田曉志;大城佳奈子;大城佳奈子;池田曉志;大城佳奈子;池田曉志;Kanako Oshiro;池田曉志;Kanako Oshiro;池田曉志;大城佳奈子;大城佳奈子;池田曉志
  • 通讯作者:
    池田曉志
Frobenius structures on Hurwitz spaces and confluent KZ equations
Hurwitz 空间上的 Frobenius 结构和汇合 KZ 方程
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikeda Akishi;Otani Takumi;Shiraishi Yuuki;Takahashi Atsushi;Kanako Oshiro;Akishi Ikeda;Akishi Ikeda;Kanako Oshiro;池田曉志;大城佳奈子;大城佳奈子;池田曉志;大城佳奈子;池田曉志;Kanako Oshiro;池田曉志;Kanako Oshiro;池田曉志;大城佳奈子;大城佳奈子;池田曉志;池田曉志;池田曉志;池田曉志;Kanako Oshiro;池田曉志;大城佳奈子;池田曉志;池田曉志;大城佳奈子;池田曉志
  • 通讯作者:
    池田曉志
Application of Scanning Acoustic Microscopy for Detection of Dental Caries Lesion
扫描声学显微镜在龋齿病变检测中的应用
  • DOI:
    10.4236/ojst.2023.131002
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naganuma Yukihiro;Hatori Kouki;Iikubo Masahiro;Takahashi Masatoshi;Hagiwara Yoshihiro;Kobayashi Kazuto;Takahashi Atsushi;Hoshi Kumi;Saijo Yoshifumi;Sasaki Keiichi
  • 通讯作者:
    Sasaki Keiichi
Graded matrix factorizations of size two and reduction
大小为 2 的分级矩阵分解和缩减
  • DOI:
    10.1007/s00229-022-01372-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Ebeling Wolfgang;Takahashi Atsushi
  • 通讯作者:
    Takahashi Atsushi

Takahashi Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takahashi Atsushi', 18)}}的其他基金

Study about Islamic philosophy's impact on the development of the Medieval natural philosophy
伊斯兰哲学对中世纪自然哲学发展的影响研究
  • 批准号:
    19K12934
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Screening for individual internal exposure using teeth formed after the accident of Fukushima daiichi nuclear power plants.
使用福岛第一核电站事故后形成的牙齿筛查个人内照射。
  • 批准号:
    19K10458
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lipophagy in AKI: the role and clinical application
脂肪自噬在 AKI 中的作用和临床应用
  • 批准号:
    19K08677
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Is equol the key to the onset and treatment of non-alcoholic fatty liver disease?
雌马酚是非酒精性脂肪肝发病和治疗的关键吗?
  • 批准号:
    18K07978
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Early detection and secondary prevention of cancers using a molecular target
使用分子靶标对癌症进行早期检测和二级预防
  • 批准号:
    16K07141
  • 财政年份:
    2016
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Autophagic inhibitor Rubicon in proximal tubules can be a therapeutic target for metabolic syndrome-related kidney disease.
近曲小管中的自噬抑制剂 Rubicon 可以成为代谢综合征相关肾脏疾病的治疗靶点。
  • 批准号:
    16K09614
  • 财政年份:
    2016
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Autophagy guards against inflammasome in acute hyperuricemic nephropathy.
自噬可防止急性高尿酸血症肾病中的炎症小体。
  • 批准号:
    26860634
  • 财政年份:
    2014
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Physical Design Technology Development for Advanced Lithography
先进光刻物理设计技术开发
  • 批准号:
    25280013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
  • 批准号:
    RGPIN-2019-03961
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
  • 批准号:
    2231173
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Mathematical Physics group, algebraic geometry
几何与数学物理组,代数几何
  • 批准号:
    2885389
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Studentship
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Workshops in Geometry and Mathematical Physics and in Probability and Statistics
几何和数学物理以及概率和统计研讨会
  • 批准号:
    2201218
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Differential geometry methods in mathematical physics
数学物理中的微分几何方法
  • 批准号:
    RGPIN-2016-04133
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
  • 批准号:
    RGPIN-2019-03961
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Differential Geometry and Mathematical Physics
微分几何与数学物理
  • 批准号:
    2438494
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了