Defects in Triply Periodic Minimal Surfaces

三周期极小曲面中的缺陷

基本信息

项目摘要

Triply periodic minimal surfaces (TPMSs) are fantastic geometric objects that combine the beauty of soap bubbles with locally minimized areas and crystals with repeating patterns. They are widely observed in biology and material science. The proposed project aims to introduce crystallographic defects, i.e. imperfections of the periodic patterns, into TPMSs.The project started in June 2018. It was motivated by observations in material sciences. The major achievement of the project is the rigorous constructions of planar defects using Traizet's node-opening technique. Moreover, by intentionally breaking symmetries, surprising new TPMSs of genus three were explicitly constructed for the first time in almost 20 years. The results so far significantly expanded our knowledge of TPMSs and widened my scope of research both in mathematics and physics.I propose to renew the project for another year. In view of the achievement so far, the extension will focus more on rigorous mathematical constructions. In particular, I plan to construct line defects by gluing Scherk towers and investigate the possibility of gluing helicoids. These projects are again motivated by structures observed in biological systems. The results are expected to further improve our understanding not only on TPMSs but also on the moduli space of minimal surfaces in general.
三周期极小曲面(TPMSs)是一种奇妙的几何物体,它将肥皂泡的美丽与局部最小化区域和具有重复图案的晶体相结合。 它们在生物学和材料科学中被广泛观察到。 建议的项目旨在将晶体缺陷(即周期图案的不完美)引入TPMS。该项目于2018年6月展开。 它是由材料科学的观察激发的。 该项目的主要成就是使用Traizet的节点开放技术严格构建平面缺陷。 此外,通过有意打破对称性,令人惊讶的新的属3的TPMS在近20年来首次明确构建。 到目前为止,这些结果大大扩展了我们对TPMS的知识,拓宽了我在数学和物理方面的研究范围。 鉴于到目前为止的成就,扩展将更多地关注严格的数学构造。 特别是,我计划通过胶合Scherk塔来构造线缺陷,并研究胶合螺旋面的可能性。 这些项目再次受到生物系统中观察到的结构的激励。 这些结果不仅有助于我们进一步理解TPMS,而且有助于我们理解一般极小曲面的模空间。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimal Twin Surfaces
  • DOI:
    10.1080/10586458.2017.1413455
  • 发表时间:
    2019-10-02
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Chen, Hao
  • 通讯作者:
    Chen, Hao
Crystal twinning of bicontinuous cubic structures
  • DOI:
    10.1107/s2052252519017287
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Han, Lu;Fujita, Nobuhisa;Che, Shunai
  • 通讯作者:
    Che, Shunai
Existence of the tetragonal and rhombohedral deformation families of the gyroid
陀螺仪四方形和菱形变形族的存在
  • DOI:
    10.1512/iumj.2021.70.8505
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Chen
  • 通讯作者:
    Hao Chen
Stacking Disorder in Periodic Minimal Surfaces
周期性极小曲面中的堆积无序
  • DOI:
    10.1137/20m1312137
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Chen;Martin Traizet
  • 通讯作者:
    Martin Traizet
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Hao Chen其他文献

Dr. Hao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ERI: Understanding the Thermomechanical Response of Sandwich Structures with Triply Periodic Minimal Surface
ERI:了解具有三周期最小表面的夹层结构的热机械响应
  • 批准号:
    2138459
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Machine learning-based design of triply periodic minimal surface structures
基于机器学习的三周期最小表面结构设计
  • 批准号:
    DE210101676
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Triply Multiplexed Concentric FRET for Bioanalysis of Cascaded Proteolytic Activity
用于级联蛋白水解活性生物分析的三重多重同心 FRET
  • 批准号:
    519079-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Triply Multiplexed Concentric FRET for Bioanalysis of Cascaded Proteolytic Activity
用于级联蛋白水解活性生物分析的三重多重同心 FRET
  • 批准号:
    519079-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Triply Multiplexed Concentric FRET for Bioanalysis of Cascaded Proteolytic Activity
用于级联蛋白水解活性生物分析的三重多重同心 FRET
  • 批准号:
    519079-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Towards Triply Multiplexed Concentric FRET for Bioanalysis
迈向用于生物分析的三重多重同心 FRET
  • 批准号:
    510543-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Research on families of maximal triply even codes and related mathematical structures
最大三偶码族及相关数学结构研究
  • 批准号:
    17K05153
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of Novel Unsaturated Silicon Compounds Based on a Silicon-Silicon Triply Bonded Compound
基于硅-硅三键化合物的新型不饱和硅化合物的制备
  • 批准号:
    16K05682
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cycles of triply coupled mechanical contact, current, and thermal conduction phenomena during resistance spot welding
电阻点焊过程中三重耦合机械接触、电流和热传导现象的循环
  • 批准号:
    16K05043
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on triply even codes and their related mathematical structures
三偶码及其相关数学结构研究
  • 批准号:
    26400002
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了