HighPa-Shock - Increasing reproducibility of the spring-back angle of thin metal sheets by inducing residual compressive stress with laser shock

HighPa-Shock - 通过激光冲击诱导残余压应力,提高薄金属板回弹角的可重复性

基本信息

项目摘要

Metallic micro components can be found in many products of daily life such as in smartphones, tablets or laptops. A majority of these micro parts are fabricated by cold forming operations as these allow low cycle times and generally a high reproducibility. However, when it comes to bending of thin metallic sheets, the reproducibility of the bending angle is rather low. This is due to the fact that the spring-back suffers large scatter. It is found that the scatter in spring-back is caused by a scatter in residual stress state of the work piece. The residual stresses are brought in the material for example by manufacturing processes prior to the bending process such as casting or rolling.Own experimental results show that the resulting bending angle can be influenced by a laser shock process prior to bending operation. Within this laser shock process, a laser shock wave is generated by an ultra-short-pulse laser and this shock wave induces residual compressive stress within the work piece. The specific mechanism behind this complex process interaction is not understood yet and therefore cannot be used industrially. It is the long term goal of this project to fully understand the influence of the laser shock process on the reproducibility of the bending process. In the first part of the priority programme it is investigated if a reproducible residual stress state can be generated by laser induced shock waves. For that, the residual stress state of commercially available steel sheets with a thickness of 0,2 mm are examined and mapped. Subsequently the stress state that can be induced by a single laser shock pulse in an annealed sheet is investigated by varying the pulse parameters. This knowledge is enhanced to evaluate if a maximum compressive stress state is achievable independent of number of applied pulses. Finally it is aimed to achieve a planar stress state by applying multiple allocated laser shock pulses.
在智能手机、平板电脑或笔记本电脑等许多日常生活产品中都可以找到金属微元件。这些微型零件中的大多数都是通过冷成形操作制造的,因为这些操作允许较短的周期时间和通常较高的再现性。然而,对于金属薄板的弯曲,弯曲角度的重现性相当低。这是因为回弹受到了很大的散布。结果表明,回弹过程中的离散性是由工件残余应力状态的离散性引起的。材料中的残余应力是在弯曲过程之前的制造过程中产生的,如铸造或轧制。几个实验结果表明,在弯曲操作之前,激光冲击过程可以影响所产生的弯曲角度。在激光冲击过程中,超短脉冲激光产生激光冲击波,在工件内部产生残余压应力。这种复杂过程相互作用背后的具体机制尚不清楚,因此不能用于工业。充分了解激光冲击工艺对弯曲工艺重现性的影响是该项目的长期目标。在优先方案的第一部分,研究激光诱导冲击波是否能产生可重复的残余应力状态。为此,研究并绘制了厚度为0.2 mm的商用钢板的残余应力状态图。随后,通过改变脉冲参数,研究了单个激光冲击脉冲在退火板中所能引起的应力状态。该知识被增强以评估最大压缩应力状态是否可独立于施加脉冲的数目而实现。最后,通过施加多个分配的激光冲击脉冲来实现平面应力状态。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducing scatter in bent angle by a laser shock peening pretreatment
通过激光冲击喷丸预处理减少弯曲角度的分散
  • DOI:
    10.2351/7.0000468
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Valentino;Stephen
  • 通讯作者:
    Stephen
An Approach to Predict the Residual Stress-Depth-Profile of Thin Sheet Metal Processed by Laser Shock Peening Without Coating
一种预测无涂层激光冲击喷丸金属薄板残余应力深度分布的方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Frank Vollertsen其他文献

Professor Dr.-Ing. Frank Vollertsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Frank Vollertsen', 18)}}的其他基金

Water as lubricant for high-speed forming by means of LIPSS
水作为润滑剂,通过 LIPSS 进行高速成型
  • 批准号:
    416530419
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermal drift in laser cutting of metallic mesh structures
金属网状结构激光切割中的热漂移
  • 批准号:
    424264718
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Increase in process efficiency of laser chemical machining by preventing the gas bubble related removal disturbances
通过防止与气泡相关的去除干扰来提高激光化学加工的工艺效率
  • 批准号:
    403820352
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Influence of metal vapor on plasma arc stability
金属蒸气对等离子弧稳定性的影响
  • 批准号:
    387755874
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Influence of alloying elements on process dynamics during laser deep penetration welding
合金元素对激光深熔焊过程动力学的影响
  • 批准号:
    331107213
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Laser Finishing of the Multi-Scale Surface Structure of Additive Manufactured Parts
增材制造零件多尺度表面结构的激光精加工
  • 批准号:
    386371584
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Polished diamond coatings for dry tapering of aluminum
用于铝干式锥削的抛光金刚石涂层
  • 批准号:
    390771352
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stabilization of the interface temperature in laser beam brazing of aluminum alloys with aluminum-based brazing alloys
铝合金与铝基钎料的激光束钎焊中界面温度的稳定
  • 批准号:
    376511346
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cutting by laser-induced shock waves
激光诱导冲击波切割
  • 批准号:
    289438332
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Energy efficient brazing by using the deep penetration effect
利用深熔效应进行节能钎焊
  • 批准号:
    326408602
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于“shock and kill”策略研究两株深海链霉菌中HIV潜伏激活的活性成分
  • 批准号:
    41676130
  • 批准年份:
    2016
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
基于24周事件新一代CME/shock到达时间物理预报模式研究
  • 批准号:
    41474153
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目

相似海外基金

Are family firms in Japan resilient to economic shock? Digging further by family types, management strategies, and earnings quality.
日本的家族企业能否抵御经济冲击?
  • 批准号:
    24K00297
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
新規Shock and Kill戦略によるHIVリザーバー減少効果の解析
使用新的电击杀灭策略分析 HIV 病毒库减少效果
  • 批准号:
    24K11628
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for Q-balls and Nuclearites emitting thermal shock waves in IceCube
在 IceCube 中寻找发射热冲击波的 Q 球和核子
  • 批准号:
    24K17062
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultra-precise, Shock-resistant Optical Clocks (USOC)
超精密、抗震光学时钟 (USOC)
  • 批准号:
    EP/Y005163/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Electro-Shock Synthesis of High Entropy Alloy Nanoparticles from Sub-Femtoliter Reactors
职业:亚飞升反应器电冲击合成高熵合金纳米粒子
  • 批准号:
    2327563
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multicenter randomized crossover trial to evaluate the pr ompt hemodynamic effect of inhaled nitric oxide in cardi ogenic shock patients with percutaneous ventricular assi st device (SUPPORT-pVAD)
评估吸入一氧化氮对使用经皮心室辅助装置的心源性休克患者的即时血流动力学影响的多中心随机交叉试验 (SUPPORT-pVAD)
  • 批准号:
    23K15158
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An experimental study of multi-ion effects on collisionless shock using electro-magnetically driven plasma flow
使用电磁驱动等离子体流的多离子效应对无碰撞冲击的实验研究
  • 批准号:
    23K13079
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pandemic shock and Urban bottom: Focusing on the stratification of Street vendors in Manila
疫情冲击与城市底部:关注马尼拉街头小贩的分层
  • 批准号:
    23K01728
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
  • 批准号:
    10734886
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了