Quermassintegral preserving local curvature flows

保持局部曲率流的横向质量积分

基本信息

  • 批准号:
    400729345
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

We consider inverse curvature flows with forcing terms of closed graphical and mean-convex hypersurfaces in a class of cylindrical warped ambient manifolds, which contains the simply connected spaceforms. For example, by adding suitable combinations of the radial distance and angle functions to the inverse mean curvature flow equation, one obtains a surface area preserving flow which decreases the total mean curvature. The special feature of this flow is that, contrary to previous quermassintegral preserving flows, it is local and does not contain a nonlocal forcing term. This feature has several technical benefits. The aim of this project is to deduce the long-time existence of these flows and smooth convergence to a coordinate slice for graphical and mean-convex initial hypersurfaces. As applications several generalisations of classical Alexandrov-Fenchel inequalities would follow for non-convex hypersurfaces. A Heintze-Karcher type inequality for closed mean-convex hypersurfaces has proven to be a helpful tool in the deduction of monotone quantities along such flows. This inequality holds with precise equality if and only if the hypersurface is a coordinate slice. A stability version of this result would be very useful in the investigation of the asymptotics of such curvature flows and hence shall also be deduced within this project.
我们考虑一类包含单连通空间形式的圆柱扭曲环境流形中封闭图形和平均凸超曲面的带有强迫项的逆曲率流。 例如,通过将径向距离和角度函数的适当组合添加到反平均曲率流方程,获得减小总平均曲率的表面积保持流。这个流的特殊之处在于,与以前的quermassintegral保持流相反,它是局部的,并且不包含非局部强制项。此功能具有几个技术优势。这个项目的目的是推导出这些流的长期存在性和光滑收敛到一个坐标切片的图形和平均凸初始超曲面。作为应用,经典的Alexandrov-Fenchel不等式的几个推广将遵循非凸超曲面。关于闭平均凸超曲面的Heintze-Karcher型不等式已被证明是推导沿着这类流的单调量的有用工具。当且仅当超曲面是坐标切片时,这个不等式精确相等。这个结果的稳定性版本在研究这种曲率流的渐近性时将是非常有用的,因此也将在这个项目中推导出来。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isoperimetric problems for spacelike domains in generalized Robertson–Walker spaces
  • DOI:
    10.1007/s00028-020-00584-z
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ben Lambert;Julian Scheuer
  • 通讯作者:
    Ben Lambert;Julian Scheuer
Orlicz–Minkowski flows
Minkowski inequalities and constrained inverse curvature flows in warped spaces
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Julian Scheuer其他文献

Professor Dr. Julian Scheuer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Julian Scheuer', 18)}}的其他基金

Harnack inequalities for curvature flows and applications
曲率流的哈纳克不等式及其应用
  • 批准号:
    319506420
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了