Utilising sewer network characteristics for the identification of optimised point-based monitoring systems – INCIDENT
利用下水道网络特征来识别优化的基于点的监测系统 â 事件
基本信息
- 批准号:402833446
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The protection of surface and groundwater bodies against potential impacts by various influencing components has become increasingly challenging due to emerging contaminants such as xenobiotics. The effects of these substances on the environment and human life are still not quantifiable and are therefore of focus in current scientific research. A strong potential for safety hazards is provided by sewer leakage. Due to the high span width of sewer age and the associated various sewer failure types, the spatiotemporally highly variable exfiltration of contaminants of various species may provide long-term impact on our ecosystems.Sewage exfiltration and the spatiotemporal distribution of the resulting contaminants within the vadose and saturated zone depend on underground properties as well as properties and the geometrical layout of sewer network systems. Due to the generally vertical flow direction in the unsaturated zone, we hypothesise that sewage contaminant plumes from multiple, small-scale sewer leakages reach the aquifer surface as one-dimensional horizontal line sources of groundwater contamination. It is practically unfeasible to identify or quantify every single leak due to several overlapping processes and external impacts with different spatial and temporal scales. However, we suppose that the field-scale identification of such line sources and their subsequently emerging groundwater plumes via groundwater monitoring will be sufficient for estimating regions of hazardous potential.Often, the monitoring system of urban groundwater resources is restricted from financial constraints and land use of urban environments. Therefore, it must be evaluated, which amount and spatial distribution of groundwater observation points are required for successfully detecting sewer-borne contamination sources. We hypothesise that, among other system characteristics such as the vadose zone, sewer network geometry has a fundamental influence on contaminant source distribution. Therefore, it will be possible to identify and localise sewer-borne contaminant plumes from groundwater monitoring by acknowledging known sewer network properties and basic site information. Moreover, we will be able to use the characteristics of the spatial distribution of line sources (here: sewer networks) to propose new or optimise existing point-based monitoring networks (here: groundwater sampling).The overall objective of this proposal is to quantify the prediction capability with which a given groundwater monitoring system can locate sewer pipe segments as sources of sub-surface contamination utilising Monte-Carlo modelling approaches. This will avail to deduct optimised groundwater monitoring concepts from a given sewer network layout with a desired accuracy and defined acceptable uncertainty by means of multi-objective optimisation.
由于新出现的污染物,如异生物质,保护地表水和地下水体免受各种影响因素的潜在影响变得越来越具有挑战性。这些物质对环境和人类生活的影响仍然无法量化,因此是当前科学研究的重点。下水道泄漏提供了很大的安全隐患。由于下水道的跨度大,排水系统的故障类型多样,不同种类的污染物在时空上的高度可变的渗出可能会对我们的生态系统产生长期的影响。污水渗出和由此产生的污染物在渗流和饱和带的时空分布取决于地下性质以及性质和下水道网络系统的几何布局。由于一般垂直流动方向的非饱和区,我们假设,污水污染物羽流从多个,小规模的下水道泄漏到达含水层表面的一维水平线的地下水污染源。由于几个重叠的过程和不同空间和时间尺度的外部影响,实际上不可能确定或量化每一个泄漏。然而,我们认为,通过地下水监测等线源及其随后出现的地下水羽流的现场规模的识别将足以估计危险potential.often区域,城市地下水资源的监测系统是受限制的财政限制和城市环境的土地使用。因此,必须评估成功探测污水污染源所需的地下水观测点数量和空间分布。我们假设,在其他系统特性,如渗流区,污水管网的几何形状污染源分布有根本性的影响。因此,通过确认已知的下水道网络特性和基本的现场信息,将有可能从地下水监测中识别和定位下水道污染物羽流。此外,我们将能够利用线源的空间分布特性(此处:下水道网络),以提出新的或优化现有的基于点的监测网络(此处:地下水采样)。本提案的总体目标是量化预测能力,利用蒙特-卡罗建模方法,给定的地下水监测系统可以将下水道管道段定位为地下污染源。这将有助于从给定的污水管网布局中扣除优化的地下水监测概念,并通过多目标优化确定可接受的不确定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Dietrich其他文献
Professor Dr. Peter Dietrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Dietrich', 18)}}的其他基金
Effective contaminant source geometries and their implications for final plume extension - ESTIMATE
有效的污染物源几何形状及其对最终羽流延伸的影响 - 估计
- 批准号:
383453752 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Geophysikalische Untersuchungen der Massenbewegung am Heumöser Hang
Heumöser Hang 上群众运动的地球物理研究
- 批准号:
117342647 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
High-resolution 3-D dielectric property models of the shallow subsurface: Integrating direct-push and georadar data
浅层地下高分辨率 3D 介电特性模型:集成直推数据和地理雷达数据
- 批准号:
48103875 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Quartäre Kieskörper: Charakterisierung, Hydrogeologie und Modellierung
第四纪砾石体:表征、水文地质和建模
- 批准号:
5302760 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Festgesteins-Aquiferanalog: Experimente und Modellierung - Laborexperimente und Entwicklung neuer Untersuchungsmethoden
固体岩石含水层模拟:实验和建模 - 实验室实验和新调查方法的开发
- 批准号:
5219046 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Research Grants
Hybrid models for contamination assessment (HYMCAT)
污染评估混合模型 (HYMCAT)
- 批准号:
531223599 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: CAS-Climate: Environmental Sustainability of Combined versus Separate Sewer Systems along the U.S. West Coast
职业:CAS-气候:美国西海岸联合下水道系统与独立下水道系统的环境可持续性
- 批准号:
2239602 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Sewer Overflow Flood Risk Analysis MOdel Dafni Enabled (SOFRAMODE)
下水道溢流洪水风险分析模型 Dafni 启用 (SOFRAMODE)
- 批准号:
ST/Y003837/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
- 批准号:
10686675 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Sewer Monitoring and Management in the Digital Era
数字时代的下水道监测与管理
- 批准号:
LP210300584 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
Categorization of fecal pollution caused by combined sewer overflows in urban coastal areas reflecting rainfall characteristics and evaluation of mitigation measures
反映降雨特征的城市沿海地区合流制污水溢流粪便污染分类及缓解措施评价
- 批准号:
23H01542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automated Sewer Defect Identification for Rapid Sewer Inspection (ASDER)– An application of Privacy and Transparency-Focused Artificial Intelligence
用于快速下水道检查的自动下水道缺陷识别 (ASDER) – 注重隐私和透明度的人工智能的应用
- 批准号:
10076017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
STTR Phase I: Machine learning and video-based sensor for measuring sewer flows
STTR 第一阶段:用于测量下水道流量的机器学习和基于视频的传感器
- 批准号:
2151637 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Combined Sewer Overflows: A Hotspot for Riverine Plastic Pollution?
合流下水道溢出:河流塑料污染的热点?
- 批准号:
2732621 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship