The mechanisms of osmo-sensitivity of adrenocortical cells and their relevance for the adrenal phenotype of the Task3 knockout mouse
肾上腺皮质细胞渗透敏感性的机制及其与Task3基因敲除小鼠肾上腺表型的相关性
基本信息
- 批准号:403208210
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The adrenal hormone aldosterone increases renal Na+ reabsorption and K+ secretion and, thereby, controls electrolyte homeostasis and long-term blood pressure. A pathological increase of aldosterone (primary aldosteronism) is believed to be disease-causing in 7-20% of patients with arterial hypertension. Thus, aldosterone secretion needs to be tightly regulated and adapted to dietary salt intake. It is already known for a long time that aldosterone secretion is strongly modulated by plasma osmolarity with hypertonicity inhibiting aldosterone secretion. Surprisingly, the relevance of this unique osmo-sensitivity has been largely neglected in recent concepts of aldosterone secretion. It appears plausible that impaired adrenal osmo-sensitivity contributes to autonomous aldosterone secretion and salt-sensitive hypertension. However, the molecular mechanisms underlying the adrenal osmo-sensitivity are poorly understood.In this proposal, we aim at investigating these mechanisms and their relevance for the salt-sensitive hypertension of Task3 potassium channel knockout mice. Specifically, we will address the following questions:1. Are electrical properties and cytosolic Ca2+ activity of excitable adrenocortical cells affected by changes of osmolarity?2. Do osmotic changes affect adrenocortical gene transcription and proteome?3. Does a defect of adrenal osmo-sensitivity contribute to the salt-sensitive hypertension phenotype of Task3 knockout mice?By addressing these questions successfully, we will shed light on the cellular mechanisms underlying osmo-sensitivity of adrenocortical cells and on the complex pathophysiology underlying primary aldosteronism.
肾上腺激素醛固酮增加肾脏对Na+的重吸收和K+的分泌,从而控制电解质平衡和长期血压。在7-20%的动脉高血压患者中,病理性的醛固酮升高(原发性醛固酮增多症)被认为是致病的。因此,需要严格调节醛固酮的分泌,并使之适应饮食中的盐摄入量。长期以来,人们已经知道,醛固酮的分泌受到血浆渗透压的强烈调节,高渗抑制了醛固酮的分泌。令人惊讶的是,在最近的醛固酮分泌概念中,这种独特的渗透敏感性在很大程度上被忽视了。肾上腺渗透压敏感性受损可能导致自主的醛固酮分泌和盐敏性高血压。然而,肾上腺渗透压敏感性的分子机制尚不清楚。在本研究中,我们旨在研究这些机制及其与Task3钾通道基因敲除小鼠盐敏感性高血压的相关性。具体地说,我们将解决以下问题:1.可兴奋的肾上腺皮质细胞的电特性和胞浆钙活性是否受到渗透压变化的影响?2.渗透压变化是否影响肾上腺皮质基因的转录和蛋白质组?3.肾上腺渗透压敏感性缺陷是否与Task3基因敲除小鼠的盐敏性高血压表型有关?通过成功地解决这些问题,我们将阐明肾上腺皮质细胞渗透压敏感性的细胞机制以及初级醛固酮增多症的复杂病理生理机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Richard Warth其他文献
Professor Dr. Richard Warth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Richard Warth', 18)}}的其他基金
Bedeutung von TASK-Kanälen für die Funktion der Nebennierenrinde und für die Regulation der Atmung
TASK 通道对于肾上腺皮质功能和呼吸调节的重要性
- 批准号:
83433136 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Units
Physiological Role of 2-P-domain K+ channels: Analysis of the renal phenotype of TASK2 and TWIK1 knock out mice (Physiologische Rolle von 2-P-Domänen-Kaliumkanälen: Analyse des Nierenphänotyps von TASK2- und TWIK1-Knockoutmäusen)
2-P-结构域K通道的生理作用:TASK2和TWIK1敲除小鼠肾表型分析(敲除小鼠)
- 批准号:
5429093 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
OSMO-US (Observation of State of Market Opportunity - US)
OSMO-US(市场机会状况观察 - 美国)
- 批准号:
10018715 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Elucidation of osmo-physiology through analysis where and how osmotic circumstance functions in the body
通过分析渗透环境在体内的作用地点和方式来阐明渗透生理学
- 批准号:
18H02569 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the osmo-sensing mechanism in yeast
酵母渗透传感机制的研究
- 批准号:
16H04761 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of activation mechanism for osmo-sensitive TRP channel and its physiological role
渗透敏感TRP通道激活机制及其生理作用的阐明
- 批准号:
15K08197 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The mechanism of osmo-regulatory signal transduction by interactions among membrane proteins through their TM regions
膜蛋白之间通过 TM 区域相互作用进行渗透调节信号转导的机制
- 批准号:
24247034 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular mechanisms underlying the glia-mediated osmo-regulation
胶质细胞介导的渗透调节的分子机制
- 批准号:
23790256 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on the mechanism to regulate the yeast osmo-regulatory MAPK pathway activation via phosphorylation and dephosphorylation
磷酸化和去磷酸化调节酵母渗透调节MAPK通路激活的机制研究
- 批准号:
21570131 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of osmo-regulation mechanisms and improvement of drought and salt tolerance of plants for revegetation in arid areas.
阐明渗透调节机制并提高植物的耐旱性和耐盐性,以促进干旱地区的植被恢复。
- 批准号:
21380097 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular osmo-sensing mechanism in the yeast HOG MAPK pathway
酵母HOG MAPK通路中的分子渗透传感机制
- 批准号:
19570122 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modulation of central sodium / osmo-homeostatic mechanisms by novel peptides-Integrative studies
新型肽对中枢钠/渗透压稳态机制的调节-综合研究
- 批准号:
17390061 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)