Exploring the effect of correlations on quantum speed limits in interacting cold atom systems
探索相互作用的冷原子系统中相关性对量子速度极限的影响
基本信息
- 批准号:21K13856
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past year I have published 3 main papers on this project. Two of these papers focussed on dynamics of quantum systems in supersymmetric(SUSY) potentials. SUSY allows to build a hierarchy of degenerate potentials that can be mapped to one another through SUSY operators. In the first work I explored the quench dynamics of many-body states between different SUSY potentials showing that revivals of the initial state are persevered at periodic times, in comparison to quenches between arbitrary potentials [PRR 4 033014 (2022)]. Follow up work on shortcuts to adiabaticity (STAs) showed that SUSY can aid in quantum control, allowing to design STAs for a family of SUSY potentials using only information on their mutual SUSY operators [NJP 24 095001 (2022)]. This also allowed to relate the quantum speed limits (QSLs) of states with respect to their SUSY operators, showing that states in the same hierarchy have closely related QSLs and therefore dynamics.The role of QSLs was further explored in interacting few-body systems which are used in a quantum heat engine [PRR 5 013088 (2023)]. Here the trap frequency and interaction are dynamically controlled allowing to realize an Otto cycle with enhanced performance due to the interactions. While dynamically controlling the interaction increases the QSL time and limits the power output, the enhancement obtained from the interactions still allows it outperform non-interacting cycles.
在过去的一年里,我发表了三篇关于这个项目的主要论文。其中两篇论文集中在动力学的量子系统在超对称(超对称)的潜力。超对称性允许建立一个层次的退化潜力,可以映射到另一个通过超对称性运营商。在第一项工作中,我探索了不同SUSY势之间多体状态的猝灭动力学,表明与任意势之间的猝灭相比,初始状态的恢复在周期性时间持续存在[PRR 4 033014(2022)]。对绝热性(STA)捷径的后续工作表明,SUSY可以帮助量子控制,允许仅使用关于其相互SUSY算子的信息来设计SUSY势族的STA [NJP 24 095001(2022)]。这也允许将状态的量子速度限制(QSL)与其SUSY算子相关联,表明相同层次中的状态具有密切相关的QSL,因此动态。QSL的作用在量子热机中使用的相互作用少体系统中得到进一步探索[PRR 5 013088(2023)]。这里,动态地控制陷波频率和相互作用,从而允许实现具有由于相互作用而增强的性能的奥托循环。虽然动态控制相互作用增加了QSL时间并限制了功率输出,但从相互作用中获得的增强仍然允许其优于非相互作用循环。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Connecting scrambling and work statistics for short-range interactions in the harmonic oscillator
连接谐振子中短程相互作用的加扰和工作统计
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mathias Mikkelsen;Thomas Fogarty and Thomas Busch
- 通讯作者:Thomas Fogarty and Thomas Busch
Nonequilibrium many-body dynamics in supersymmetric quenching
超对称淬火中的非平衡多体动力学
- DOI:10.1103/physrevresearch.4.033014
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Campbell Christopher;Fogarty Thomas;Busch Thomas
- 通讯作者:Busch Thomas
Quantum control and quantum speed limits in supersymmetric potentials
超对称势中的量子控制和量子速度限制
- DOI:10.1088/1367-2630/ac89a4
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Campbell C;Li J;Busch Th;Fogarty T
- 通讯作者:Fogarty T
“Self-pinning transition of Tonks-Girardeau gas in a Bose Einstein Condensate”
“玻色爱因斯坦凝聚态中唐克斯-吉拉多气体的自钉扎转变”
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Keller Tim;Fogarty Thomas;Busch Thomas;Thomas Fogarty
- 通讯作者:Thomas Fogarty
Self-Pinning Transition of a Tonks-Girardeau Gas in a Bose-Einstein Condensate
玻色-爱因斯坦凝聚体中唐克斯-吉拉多气体的自钉扎转变
- DOI:10.1103/physrevlett.128.053401
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Keller Tim;Fogarty Thomas;Busch Thomas
- 通讯作者:Busch Thomas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FOGARTY Thomas其他文献
FOGARTY Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FOGARTY Thomas', 18)}}的其他基金
Using symmetry to enhance quantum batteries and heat engines
利用对称性增强量子电池和热机
- 批准号:
23K03290 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study of 32-multiplexing transmission antenna system in the millimeter-wave band based on rectangular-coordinate two-dimensional polarity orthogonality
基于直角坐标二维极性正交性的毫米波段32复用发射天线系统研究
- 批准号:
21H01321 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Sulfonium salts as pseudohalide electrophiles for cross-coupling having improved tractability, orthogonality, stability and environmental profile
锍盐作为用于交叉偶联的拟卤化物亲电子试剂,具有改进的易处理性、正交性、稳定性和环境特征
- 批准号:
2435222 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
- 批准号:
EP/P009719/2 - 财政年份:2018
- 资助金额:
$ 1.66万 - 项目类别:
Research Grant
Exploiting quantum phase transitions to improve the efficiency of quantum thermodynamic processes
利用量子相变提高量子热力学过程的效率
- 批准号:
18K13507 - 财政年份:2018
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design of robust and error-free signal-amplification circuit with orthogonal artificial nucleic acids
使用正交人工核酸设计稳健且无差错的信号放大电路
- 批准号:
18H03933 - 财政年份:2018
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
- 批准号:
EP/P009670/1 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Research Grant
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
- 批准号:
EP/P009549/1 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Research Grant
A Unified Multiple Access Framework for Next Generation Mobile Networks By Removing Orthogonality (MANGO)
通过消除正交性实现下一代移动网络的统一多址接入框架 (MANGO)
- 批准号:
EP/P009719/1 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Research Grant
Geometric constants of Banach Spaces and their applications
Banach空间的几何常数及其应用
- 批准号:
17K05287 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotics of products of spectral projections with applications to Anderson's orthogonality and entanglement entropy
谱投影乘积的渐近及其在安德森正交性和纠缠熵中的应用
- 批准号:
308446886 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Research Fellowships