Development of Smart Viticulture System Using Autonomous Robots

使用自主机器人开发智能葡萄栽培系统

基本信息

  • 批准号:
    21K14117
  • 负责人:
  • 金额:
    $ 2.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This research aims at developing a smart viticulture system through the use of autonomous robots and AI. Smart viticulture aims at reducing the burden of farmers by automating tasks like vineyard monitoring, inspection, yield estimation, and harvesting of grapes.In FY2022, the accuracy of the monitoring system developed in previous FY was improved through the use of Deep Learning based landmark detection. The previously developed system relied on landmark (pillar) detection based on color, which caused inaccuracies during the change of illumination conditions and rain. A convolutional neural network based model was trained and evaluated to be robust against dynamic changes in the environment and gave better estimation of the landmarks. This improved the overall SLAM (Simultaneous Localization and Mapping) module which was developed without the use of GPS, and relies on local-only features for cost-cutting. In Addition, a deep learning CNN model was developed for detecting grapes/branches and their conditions (ripe, almost-ripe, raw). A weed detection model has been developed. The harvesting module is developed in simulator and a real-world manufacturing and test is planned for FY2023. Algorithms for robot navigation in structured vineyard environment, obstacle avoidance, alarm system, multi-robot cooperation algorithms for vineyard, have also been developed and results have been published in conferences.
该研究旨在通过使用自主机器人和人工智能开发智能葡萄栽培系统。智能葡萄栽培旨在通过自动化葡萄园监控、检查、产量估算和葡萄收获等任务来减轻农民的负担。在2022财年,通过使用基于深度学习的地标检测,上一财年开发的监控系统的准确性得到了提高。以前开发的系统依赖于基于颜色的地标(柱子)检测,这在照明条件和降雨的变化期间导致不准确。基于卷积神经网络的模型经过训练和评估,对环境中的动态变化具有鲁棒性,并对地标进行了更好的估计。这改进了整个SLAM(同步定位和地图)模块,该模块在开发时没有使用GPS,并且依赖于仅本地功能来削减成本。此外,还开发了一个深度学习CNN模型,用于检测葡萄/树枝及其状况(成熟,即将成熟,生)。杂草检测模型已经开发。采集模块在模拟器中开发,并计划于2023财年进行实际生产和测试。结构化葡萄园环境中的机器人导航算法,避障,报警系统,葡萄园的多机器人合作算法,也已经开发出来,结果已在会议上发表。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Improved Reactive Navigation Method for Mobile Robots using Potential Fields
一种改进的基于势场的移动机器人反应导航方法
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankit Ravankar ;Abhijeet Ravankar ;Takanori Emaru;Yukinori Kobayashi
  • 通讯作者:
    Yukinori Kobayashi
Simulation-based Mobile Robot Navigation for Precision Agriculture Monitoring Application
基于仿真的移动机器人导航用于精准农业监测应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravankar Ankit A.;Ravankar Abhijeet;Seyed Amir Tafrishi;Jose Victorio Salazar Luces; Yasuhisa Hirata
  • 通讯作者:
    Yasuhisa Hirata
Cooperative Navigation in Multi-Robot System
多机器人系统中的协作导航
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravankar Abhijeet;Ravankar Ankit A.
  • 通讯作者:
    Ravankar Ankit A.
Autonomous Navigation of Mobile Robots in Vineyard
葡萄园移动机器人自主导航
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravankar Abhijeet;Ravankar Ankit A.;Yohei Hoshino
  • 通讯作者:
    Yohei Hoshino
Distributed Docking Station System for Mobile Robots
移动机器人分布式扩展坞系统
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravankar Abhijeet;Ravankar Ankit A.
  • 通讯作者:
    Ravankar Ankit A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ラワンカル アビジート其他文献

ラワンカル アビジート的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了