巨大ひずみ加工とマルテンサイト変態で組織制御した高強度・高導電性Al線材の開発

大应变加工和马氏体相变控制显微组织的高强高导铝丝的研制

基本信息

  • 批准号:
    21K14436
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

アルミニウム(Al)は軽量かつ導電性に優れ、カルシウム(Ca)添加によりさらなる軽量化を図ることができる。通常CaはAl中にわずか0.002%しか固溶しないものの、本研究では、高圧ねじり(HPT)加工法を用いた巨大ひずみ導入によりCa固溶量を増大させて新たに時効特性を付与させることを目指す。本研究では亜共晶の1%Ca, 3%Ca および共晶組成の7.6%Ca材においてHPT加工を施した。100回転後の硬さは、199HV(1%Ca)、272HV(3%Ca)および228HV(7.6%Ca)となり、3%Ca添加で最大硬さが得られた。なお、7.6%Ca材は6 GPaの高圧下で加工を施しても試料脆化が見られた。TEM観察によると、Ca添加量によらず導入ひずみの増加とともに結晶粒の微細化を確認し、100回転後に、1%Ca材では90 nm、3%Ca材では15 nmの超微細粒となった。SEM観察およびXRD分析結果から、特に、100回転後にAl4Ca相の存在量が大幅に減少し1%Ca材では0.3%、3%Ca材では最大2.6%のCaを固溶できることが示唆された。そこで100℃で時効処理を行ったところ、それぞれ硬さが最大24 HVおよび23 HV向上することを確認し、新たに時効硬化特性を付与することができた。また130℃で時効を行った際にも時効硬化を確認しており、100℃時効材との挙動の違いについては析出物の構造の違いから検討していく必要がある。
The amount of aluminum (Al) added to the conductivity of the alloy was determined by the addition of aluminum (Ca). In general, Ca content in Al is less than 0.002%. In this study, the content of Ca in Al is increased by high pressure (HPT) processing method. In this study, the eutectic composition of 1%Ca, 3%Ca and 7.6%Ca was studied. After 100 cycles, the hardness was 199HV(1%Ca), 272HV(3%Ca) and 228HV(7.6%Ca). The embrittlement of the 7.6%Ca material was observed when processed under high pressure of 6 GPa. TEM observation shows that the amount of Ca added in the crystal particles increases, and the crystal particles are refined. After 100 cycles, the crystal particles are 90 nm in 1% Ca material and 15 nm in 3% Ca material. SEM and XRD analysis showed that the amount of Al4Ca phase decreased significantly from 0.3% to 2.6% for 1%Ca and 3%Ca respectively after 100 cycles. For example, when the temperature is 100℃, the hardness is up to 24 HV. When the temperature is 130℃, the hardening time is confirmed, and when the temperature is 100℃, the structure of the precipitate is violated.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Al-Cu合金の高圧下における固溶過程のその場観察と固溶限拡大を活用した高強度化
Al-Cu合金高压固溶过程的原位观察及利用固溶极限扩展提高强度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;廣澤 渉一;堀田 善治;新名 亨;入舩 徹男;肥後 祐司; 丹下 慶範;大石 泰生
  • 通讯作者:
    大石 泰生
Phase transformations in Al-Ti-Mg powders consolidated by high-pressure torsion: Experiments and first-principles calculations
高压扭转固结的 Al-Ti-Mg 粉末中的相变:实验和第一性原理计算
  • DOI:
    10.1016/j.jallcom.2021.161815
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Tang Yongpeng;Murayama Mitsuhiro;Edalati Kaveh;Wang Qing;Iikubo Satoshi;Masuda Takahiro;Higo Yuji;Tange Yoshinori;Ohishi Yasuo;Mito Masaki;Horita Zenji
  • 通讯作者:
    Horita Zenji
Electrical conductivity characterized at varying strains in spiral cut high-pressure torsion discs
螺旋切割高压扭盘中不同应变下的电导率特征
  • DOI:
    10.1016/j.matlet.2022.131770
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Ramos Evander;Masuda Takahiro;Horita Zenji;Mathaudhu Suveen
  • 通讯作者:
    Mathaudhu Suveen
Extra-strengthening through solution treatment under high pressure and subsequent high-pressure torsion
通过高压固溶处理和随后的高压扭转进行额外强化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Masuda;S. Hirosawa;Z. Horita;T. Shinmei;T. Irifune;Y. Higo;Y. Tange;Y. Ohishi
  • 通讯作者:
    Y. Ohishi
Production of Ultrafine-Grained Aluminum Alloys in Upsized Sheets Using Process of Incremental Feeding High-Pressure Sliding (IF-HPS)
采用增量喂料高压滑动工艺 (IF-HPS) 生产超细晶铝合金大型板材
  • DOI:
    10.2320/matertrans.mt-la2022032
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Komatsu Takuya;Masuda Takahiro;Tang Yongpeng;Mohamed Intan Fadhlina;Yumoto Manabu;Takizawa Yoichi;Horita Zenji
  • 通讯作者:
    Horita Zenji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

増田 高大其他文献

高圧下における溶体化処理を利用した時効硬化型アルミニウム合金の高強度化
利用高压固溶处理提高时效硬化铝合金的强度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;廣澤 渉一;堀田 善治; 新名 亨;入舩 徹男;肥後 祐司; 丹下 慶範;大石 泰生
  • 通讯作者:
    大石 泰生
高圧巨大ひずみ加工を用いたアルミニウム合金の超高強度化
利用高压大应变加工实现铝合金超高强度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;Xavier Sauvage;廣澤 渉一;丹羽 侑希;峯 洋二;新名 亨; 入舩 徹男;堀田 善治
  • 通讯作者:
    堀田 善治
機械学習と高圧ねじり加工によるAl-Mg-Ti 三元系合金の超伝導探索
利用机器学习和高压扭转研究 Al-Mg-Ti 三元合金的超导性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    杢谷 成道;美藤 正樹;松本 要;唐永 鵬;増田 高大;堀田 善治
  • 通讯作者:
    堀田 善治
いくつかの新規接合技術と大型構造物への適用の可能性
一些新的连接技术及其在大型结构中的应用潜力
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    馬 鵬程;増田 高大;廣澤 渉一;堀田 善治;藤井英俊
  • 通讯作者:
    藤井英俊
HPS加工を施した高強度Al-Mg合金の熱および電気伝導特性
HPS加工高强铝镁合金的导热性能和导电性能
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河野 正道;河原 朋美;増田 高大;唐 永鵬;堀田 善治
  • 通讯作者:
    堀田 善治

増田 高大的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('増田 高大', 18)}}的其他基金

圧力制御による超高強度アルミニウム合金の開発
压力控制超高强度铝合金的开发
  • 批准号:
    19J01767
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
固溶強化と結晶粒微細化強化を併用した析出強化トリプル超ジュラルミンの開発
采用固溶强化和晶粒细化强化的沉淀强化三重超级硬铝的开发
  • 批准号:
    16J07050
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

ナノ結晶・非晶質Cu-Zr過飽和固溶体合金の時効析出による極限的高強度化と学理探求
时效沉淀纳米晶/非晶Cu-Zr过饱和固溶体合金的极高强度及理论探索
  • 批准号:
    24K08110
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
fabrication of supersaturated solid solution thermoelectric materials utilizing novel spherical composite powder preparation technology and laser powder bed fusion
利用新型球形复合粉末制备技术和激光粉末床熔融制备过饱和固溶体热电材料
  • 批准号:
    23K13572
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improvement of Corrosion Resistance of Metallic Materials by the Formation of Supersaturated Solid Solution Phases
通过形成过饱和固溶体相来提高金属材料的耐腐蚀性
  • 批准号:
    15K14175
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了