固溶強化と結晶粒微細化強化を併用した析出強化トリプル超ジュラルミンの開発

采用固溶强化和晶粒细化强化的沉淀强化三重超级硬铝的开发

基本信息

  • 批准号:
    16J07050
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-22 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

前年度までの研究で、A2024合金に高圧ねじり(High-Pressure Torsion)加工を利用し、本研究の目標である1 GPaの引張強度を達成した。さらにその微細構造を高分解能電子顕微鏡や3次元アトムプローブ分析により解析し、主要添加元素であるCuおよびMgが小角粒界を含めた結晶粒界上に偏析することを明らかにした。本年度は、このような観察結果をもとに1 GPaの引張強度の定量性について金属材料の強化メカニズムから評価した。一般に大角粒界は転位の運動を妨げる役割を果たし、ホール・ペッチの関係により結晶粒が小さいほど材料強度が向上する。一方で、これまで小角粒界の存在は材料強度に大きく寄与しないとされてきた。小角粒界を効果的に利用することは、大角粒界と比べて、より小さなスケールでの強化が可能となる。本研究では従来の強化機構に加え、溶質原子が偏析した小角粒界も材料強度に繋がるとして理論的に強度を算出し、超高強度化に至るメカニズムを解明した。これにより、小角粒界への偏析は材料強度への寄与が大きく、超高強度アルミニウム合金の実現に重要な因子であることを明らかにした。またAl-Fe合金の高強度化にも取り組んだ。Al中のFeは固溶量が0.052wt%と少なく、過剰のFeが含まれると凝固過程でAl3FeやAl6Feが形成されて延性が低下する。一方、Feはリサイクルの過程で蓄積されることから、不純物であるFe元素の有効活用が期待される。本研究でAl-2wt%Fe合金に巨大ひずみ加工を施すことで、超々ジュラルミンの強度に匹敵することを示し、その後の時効処理により700MPa以上へ向上できることを明らかにした。さらに、その微細組織は時効中も安定で、ピーク時効時においてもサブミクロンレベルの超微細粒組織が維持されることを示した。この結果は、国際学会(ICAA16:カナダ)で成果報告した。
The previous year 's まで まで research で, the に High-Pressure ねじ (high-pressure Torsion) processing of A2024 alloy を utilization を, and the <s:1> target of this study である1 GPa <s:1> tension intensity を achieved た た. さ ら に そ の fine-structure を high decomposition can electronic 顕 micromirror や 3 dimensional ア ト ム プ ロ ー ブ analysis に よ り parsing し, main add elements で あ る Cu お よ び Mg が small Angle LiJie を containing め た に segregation on crystallization LiJie す る こ と を Ming ら か に し た. This year は, こ の よ う な 観 examine results を も と に 1 GPa の extension and strength の quantitative に つ い て の metal materials to strengthen メ カ ニ ズ ム か ら review 価 し た. General に bighorn LiJie は planning a の movement を hinder げ る "を cut fruit た し, ホ ー ル · ペ ッ チ の masato is に よ り small crystals が さ い ほ ど material strength が upward す る. On one side, there are で, とされて れまで small angular particle boundaries, で material strength に is large, <s:1> く is sent to とされて な とされて とされて た た. Small Angle LiJie を unseen fruit に using す る こ と は, bighorn LiJie と than べ て, よ り small さ な ス ケ ー ル で の may strengthen が と な る. This study で は 従 to の strengthening institutions が に え, solute atoms segregation し た small Angle LiJie も material strength に 繋 が る と し て theory に strength を calculate し, ultra-high strength に to る メ カ ニ ズ ム を interpret し た. こ れ に よ り, small Angle LiJie へ の segregation は material strength へ の send with が き く, ultra-high strength ア ル ミ ニ ウ ム alloy の be presently に important factor な で あ る こ と を Ming ら か に し た. Youdaoplaceholder0 Al-Fe alloy <s:1> high-strength に extract the んだ group. Al の in Fe は solution fewer が 0.052 wt % と な く, turning の Fe が containing ま れ る と solidification process で Al3Fe や Al6Fe が form さ れ て low ductility が す る. On one side, the Fe リサ リサ <s:1> <s:1> <s:1> <s:1> <s:1> <s:1> で process で accumulates される <s:1> と ら ら, impimpurities である the Fe element <e:1> has an effective utilization が expectation される. This study で Al - 2 wt % Fe alloy に huge ひ ず み processing を shi す こ と で, super 々 ジ ュ ラ ル ミ ン に の strength match す る こ と を し, そ の の after working 処 Richard に よ り up more than 700 mpa へ で き る こ と を Ming ら か に し た. さ ら に, そ の fine texture は when working in も settle で, ピ ー ク when working when に お い て も サ ブ ミ ク ロ ン レ ベ ル の ultrafine grain structure が maintain さ れ る こ と を shown し た. <s:1> the results of で, the report of the achievements of the international society (ICAA16: カナダ) で, た.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of ultra high strength (1GPa) aluminum alloy using severe plastic deformation under high pressure
利用高压下剧烈塑性变形开发超高强度(1GPa)铝合金
Fabrication of high-strength and high-ductility laminated A2024 aluminum alloy/aluminum composite by severe plastic deformation under high pressure
高压剧烈塑性变形制备高强高塑层状A2024铝合金/铝复合材料
Incremental Feeding High-Pressure Sliding for Achieving Large Area of Severe Plastic Deformation
增量加料高压滑动实现大面积剧烈塑性变形
巨大ひずみ加工と時効処理を併用することで作製した高強度A2024合金の機械的特性と微細組織観察
大应变加工与时效处理相结合的高强度A2024合金力学性能及显微组织观察
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田高大;Xavier Sauvage;堀田善治
  • 通讯作者:
    堀田善治
高圧スライド加工(HPS)法で超微細粒化したA2024合金の時効処理による高強度化
采用高压滑动加工 (HPS) 方法对超细晶 A2024 合金进行时效处理,实现高强度
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田高大;瀧沢陽一;堀田善治;湯本学;小田切吉治
  • 通讯作者:
    小田切吉治
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

増田 高大其他文献

高圧下における溶体化処理を利用した時効硬化型アルミニウム合金の高強度化
利用高压固溶处理提高时效硬化铝合金的强度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;廣澤 渉一;堀田 善治; 新名 亨;入舩 徹男;肥後 祐司; 丹下 慶範;大石 泰生
  • 通讯作者:
    大石 泰生
高圧巨大ひずみ加工を用いたアルミニウム合金の超高強度化
利用高压大应变加工实现铝合金超高强度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;Xavier Sauvage;廣澤 渉一;丹羽 侑希;峯 洋二;新名 亨; 入舩 徹男;堀田 善治
  • 通讯作者:
    堀田 善治
機械学習と高圧ねじり加工によるAl-Mg-Ti 三元系合金の超伝導探索
利用机器学习和高压扭转研究 Al-Mg-Ti 三元合金的超导性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    杢谷 成道;美藤 正樹;松本 要;唐永 鵬;増田 高大;堀田 善治
  • 通讯作者:
    堀田 善治
いくつかの新規接合技術と大型構造物への適用の可能性
一些新的连接技术及其在大型结构中的应用潜力
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    馬 鵬程;増田 高大;廣澤 渉一;堀田 善治;藤井英俊
  • 通讯作者:
    藤井英俊
Al-Cu合金の高圧下における固溶過程のその場観察と固溶限拡大を活用した高強度化
Al-Cu合金高压固溶过程的原位观察及利用固溶极限扩展提高强度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    増田 高大;廣澤 渉一;堀田 善治;新名 亨;入舩 徹男;肥後 祐司; 丹下 慶範;大石 泰生
  • 通讯作者:
    大石 泰生

増田 高大的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('増田 高大', 18)}}的其他基金

巨大ひずみ加工とマルテンサイト変態で組織制御した高強度・高導電性Al線材の開発
大应变加工和马氏体相变控制显微组织的高强高导铝丝的研制
  • 批准号:
    21K14436
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
圧力制御による超高強度アルミニウム合金の開発
压力控制超高强度铝合金的开发
  • 批准号:
    19J01767
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

アルミニウム合金の熱加工デジタルツインの確立に向けた研究・開発
建立铝合金热处理数字孪生的研究和开发
  • 批准号:
    24K17457
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
結晶粒微細化を前提とした高比強度高導電アルミニウム合金の設計指針の確立
基于晶粒细化的高比强度高导铝合金设计指南的建立
  • 批准号:
    24K01214
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
水蒸気を用いたアルミニウム合金上への皮膜形成過程に対する溶質原子の役割
溶质原子在铝合金水蒸气成膜过程中的作用
  • 批准号:
    24KJ1978
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
金属組織学・電気化学の融合による超高耐食アルミニウム合金の創製
通过金相学和电化学的融合创造超高耐腐蚀铝合金
  • 批准号:
    24K17529
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
金属3Dプリンタ技術が生み出す革新的耐熱アルミニウム合金の強化原理
金属3D打印技术生产的创新耐热铝合金的强化原理
  • 批准号:
    24H00378
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
高強度アルミニウム合金に自己防食機能を付与する革新的技術の構築
开发创新技术为高强度铝合金提供自腐蚀保护
  • 批准号:
    24KJ0361
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多機能性皮膜を被覆したアルミニウム合金製超軽量セパレータの創出
开发出涂有多功能薄膜的铝合金超轻量隔板
  • 批准号:
    23K23086
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
金属3D積層造形に適した高強度アルミニウム合金の設計および組織制御
适用于金属3D增材制造的高强度铝合金的设计和织构控制
  • 批准号:
    23KJ1077
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
パルス渦電流法よるアルミニウム合金とCFRTPの異種材料接合品の分離技術の開発
脉冲涡流法铝合金与CFRTP异种材料粘合制品分离技术开发
  • 批准号:
    22K03818
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多機能性皮膜を被覆したアルミニウム合金製超軽量セパレータの創出
开发出涂有多功能薄膜的铝合金超轻量隔板
  • 批准号:
    22H01818
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了