Particle Partition Entanglement After a Quantum Quench
量子淬灭后的粒子分区纠缠
基本信息
- 批准号:404758601
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project will investigate the dynamics and growth of entanglement entropy after a quantum quench of interacting particles with the goal of understanding the role played by particle statistics during the approach of an isolated quantum system to thermal equilibrium. While previous work has explored the entanglement under a spatial mode bipartition, we propose to study entanglement under a particle bipartition, which captures non-local and potentially long-range quantum correlations between subsets of identical itinerant particles. This type of entanglement has no externally imposed length or time scales and has been shown to be sensitive to particle statistics at leading order. We expect that the conventional paradigm of spatial entanglement after a quench -- growth from a boundary-law to saturation at an extensive value with a time-scale set by the size of the spatial subregion -- will be modified for particle partitions. Here we expect to uncover how entanglement due to fluctuations and particle statistics evolves out of the pre-quench ground state during eigenstate thermalization.We will study particle partition entanglement entropy dynamics due to quantum quenches by combining complementary large scale exact diagonalization techniques with non-equilibrium bosonization calculations. Specifically, we will study one dimensional models of spinless lattice fermions and vary the nearest neighbor repulsive interactions to quench within the Luttinger liquid phase and to tune across the quantum phase transition between a Luttinger liquid and an insulating charge density wave. We will also investigate the quantum phase transitions between a weak pairing superconductor (equivalent to a Luttinger liquid in one spatial dimension) and a strong pairing superconductor consisting of tightly bound pairs, controlled by the strength of an attractive nearest neighbour coupling in the presence of a repulsive next-nearest neighbor coupling needed to stabilize the system. The particle partition entanglement entropy should provide exciting new information here, as both the effective number of particles and their statistics changes across this transition.
在这个项目中,将研究相互作用粒子的量子猝灭后纠缠熵的动态和增长,目的是了解粒子统计在孤立量子系统接近热平衡过程中所起的作用。 虽然以前的工作已经探讨了纠缠下的空间模式bipartition,我们建议研究纠缠下的粒子bipartition,它捕获非本地和潜在的远程量子关联的子集相同的巡回粒子。这种类型的纠缠没有外部强加的长度或时间尺度,并已被证明是敏感的粒子统计在领导秩序。 我们预计,传统的范式的空间纠缠后淬火-增长从边界法饱和在一个广泛的值与时间尺度设置的大小的空间子区域-将被修改为粒子分区。 在这里,我们希望揭示在本征态热化过程中,由于涨落和粒子统计引起的纠缠如何从预猝灭基态演化出来,我们将结合互补的大尺度精确对角化技术和非平衡玻色化计算来研究量子猝灭引起的粒子分配纠缠熵动力学。 具体来说,我们将研究一维模型的无自旋晶格费米子和不同的最近邻排斥相互作用,淬火内的Luttinger液相和调谐之间的量子相变Luttinger液体和绝缘电荷密度波。我们还将研究一个弱配对超导体(相当于一个Luttinger液体在一个空间维度)和一个强配对超导体组成的紧密结合对之间的量子相变,控制的吸引力的最近邻耦合的强度在存在的排斥次近邻耦合需要稳定的系统。粒子分割纠缠熵应该在这里提供令人兴奋的新信息,因为粒子的有效数量和它们的统计数据都在这个转变中发生变化。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rényi Generalization of the Accessible Entanglement Entropy
可及纠缠熵的 Rényi 推广
- DOI:10.1103/physrevlett.121.150501
- 发表时间:2018
- 期刊:
- 影响因子:8.6
- 作者:Barghathi, Hatem;Herdman, C. M.;Del Maestro, Adrian
- 通讯作者:Del Maestro, Adrian
Theory of Liquid Film Growth and Wetting Instabilities on Graphene.
石墨烯液膜生长和润湿不稳定性理论
- DOI:10.1103/physrevlett.120.236802
- 发表时间:2018
- 期刊:
- 影响因子:8.6
- 作者:Sanghita Sengupta;Nathan S. Nichols;Adrian Del Maestro;Valeri N. Kotov
- 通讯作者:Valeri N. Kotov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Bernd Rosenow其他文献
Professor Dr. Bernd Rosenow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Bernd Rosenow', 18)}}的其他基金
Reorganization of Edge Modes: Quantum Phase Transitions and Textures
边缘模式的重组:量子相变和纹理
- 批准号:
406252756 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Engineering the Coherency of Fractional and Non-Abelian Electronic Interferometers
分数式和非阿贝尔电子干涉仪的相干性工程
- 批准号:
253312772 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Phase Relaxation and Counterflow Dissipation in Bilayer Quantum Hall Systems
双层量子霍尔系统中的相位弛豫和逆流耗散
- 批准号:
248836978 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Wechselwirkungseffekte in niedrigdimensionalen und mesoskopischen Systemen
低维介观系统中的相互作用效应
- 批准号:
5453216 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Reduzierte Dimensionalität, Unordnung und Wechselwirkung
降维、无序和交互
- 批准号:
5206747 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Fellowships
相似海外基金
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Complexity of Partition Problems
分区问题的复杂性
- 批准号:
RGPIN-2019-04221 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Facteurs contrôlant la limite nord de répartition de l'érable à sucre
苏克雷可控制分区的北部限制因素
- 批准号:
RGPIN-2020-06245 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Post-Partition Shakespeare: Northern Ireland's Bard in History, Politics and Culture (1921-Present)
分治后莎士比亚:北爱尔兰历史、政治和文化领域的吟游诗人(1921 年至今)
- 批准号:
2778356 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
SaTC: CORE: Small: Partition-Oblivious Real-Time Hierarchical Scheduling
SaTC:核心:小型:分区无关的实时分层调度
- 批准号:
2302610 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CC* Compute: GPU HPC Cluster Partition for Research, Education, and Student Success
CC* 计算:GPU HPC 集群分区促进研究、教育和学生的成功
- 批准号:
2201435 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
BORDER CROSSINGS: Exploring history and community through virtual reality at the 75th anniversary of the Partition
边境穿越:在印巴分治 75 周年之际通过虚拟现实探索历史和社区
- 批准号:
AH/X000184/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
CBMS Conference: Ramanujan's Partition Congruences, Mock Theta Functions, and Beyond
CBMS 会议:拉马努金的划分同余、模拟 Theta 函数及其他
- 批准号:
2132649 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Spatial-temporal control over tipping-point operation defines fidelity of genome partition
对临界点操作的时空控制定义了基因组分区的保真度
- 批准号:
2105837 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant