CC* Compute: GPU HPC Cluster Partition for Research, Education, and Student Success
CC* 计算:GPU HPC 集群分区促进研究、教育和学生的成功
基本信息
- 批准号:2201435
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Oral Roberts University aims to deploy a GPU-based server partition called Eli, and integrate it with Titan, a campus wide resource. Eli will address the GPU and storage needs of computing for research, research training, and education. The proposed hardware is 6 GPU Compute Nodes with 2 Intel 32-Core Xeon Gold CPUs having 16 x 32G DRAM, 4 NVIDIA Tesla A30 GPUs, 1 SATA SSD boot drive (960GB) and 2 NVMe Solid State Drives (4TB each). It also includes a meta data Server, storage server, and NFS node.This project addresses two areas of improvement in the Oral Roberts University (ORU) Research Computing and Analytics (ORCA) facility, providing GPU resources and adding much needed parallel file system (PFS) resources. These new resources are deployed as a third cluster partition, named Eli, in ORCA’s existing Titan cluster. Along with Eli’s 100/200Gb HDR InfiniBand fabric, the Eli PFS supports native communication from each of Titan’s other partitions with 100GbE OmniPath and 40GbE QDR InfiniBand. Eli’s GPU nodes has potential to address a local and regional void of GPU capacity for traditional HPC codes (especially VASP and GAMESS) as well as emerging Data Science codes. VASP and GAMESS consume many core hours. The GPUs will accelerate these efforts while freeing previously used resources to other applications. With ORU’s Data Science degree concentrations, nearly half of the new ORU research efforts are Data Science related, driving demand for tools such as TensorFlow and Natural Language Processing tools. Eli’s PFS provides the much-needed capacity and performance to support the existing and emerging science drivers. While serving ORCA’s current users, Eli’s augmentation of Titan provides new researchers additional motivation to embrace HPC/AI methods. Titan/Eli is freely available for use by all Oklahoma academic institutions. The ORCA management team actively evangelizes HPC/AI to nascent researchers and provides opportunities for substantial undergraduate research experiences. Success is measured by system utilization, availability, and increased researcher participation. This project aligns with ORU’s NSF CC*-funded 100GbE connectivity to the OneOklahoma Friction Free Network (OFFN), a science DMZ for 19 Oklahoma academic institutions and is funded through the collaborative efforts of the Office of Advanced Cyberinfrastructure (OAC) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(Public Law 117-2)。Oral Roberts University的目标是部署一个基于GPU的服务器分区,名为Eli,并将其与校园范围的资源Titan整合。ELI将解决用于研究、研究、培训和教育的计算的GPU和存储需求。建议的硬件是6个GPU计算节点,2个Intel 32-Core Xeon Gold CPU,16个32G DRAM,4个NVIDIA Tesla A30 GPU,1个SATA SSD启动驱动器(960 GB)和2个NVMe固态驱动器(每个4 TB)。它还包括元数据服务器、存储服务器和NFS节点。该项目针对Oral Roberts University(ORU)研究计算和分析(ORCA)设施的两个方面进行了改进,提供了GPU资源和添加了急需的并行文件系统(PFS)资源。这些新资源被部署为ORCA现有的Titan集群中名为ELI的第三个集群分区。与Eli的100/200 GB HDR InfiniBand结构一起,Eli PFS支持使用100 GbE OmniPath和40 GbE QDR InfiniBand从Titan的每个其他分区进行本地通信。Eli的GPU节点有潜力解决传统HPC代码(特别是Vasp和GamesS)以及新兴数据科学代码的本地和地区GPU能力不足的问题。Vasp和GamesS占用了很多核心时间。GPU将加速这些工作,同时将以前使用的资源释放给其他应用程序。随着ORU数据科学学位的集中,新ORU近一半的研究工作与数据科学相关,推动了对TensorFlow和自然语言处理工具等工具的需求。ELI的PFS提供了急需的能力和性能,以支持现有的和新兴的科学驱动力。在为ORCA的现有用户服务的同时,Eli对Titan的增强为新的研究人员提供了采用HPC/AI方法的额外动力。Titan/ELI免费供俄克拉荷马州所有学术机构使用。ORCA管理团队积极向初出茅庐的研究人员宣传HPC/AI,并提供大量本科生研究经验的机会。成功的衡量标准是系统利用率、可用性和增加的研究人员参与度。该项目与ORU的NSF CC*资助的100GbE到OneOklahoma Friction Free Network(OFFN)的连接保持一致,OFFN是俄克拉荷马州19所学术机构的科学非军事区,由高级网络基础设施办公室(OAC)和既定的激励竞争研究计划(EPSCoR)共同努力资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wheat其他文献
Parallel Real-Time Operating System for Secure Environments
用于安全环境的并行实时操作系统
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
H. Nag;R. Gotfried;D. Greenberg;Chulsoo Kim;B. Maccabe;T. M. Stallcup;G. Ladd;L. Shuler;Stephen Wheat;David W. Van Dresser - 通讯作者:
David W. Van Dresser
Stephen Wheat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wheat', 18)}}的其他基金
CC* Regional: Extended Vital Education Reach Multiple Organization Regional OneOklahoma Friction Free Network (EVER-MORe-OFFN)
CC* 区域:扩展重要教育覆盖多个组织区域 OneOklahoma 无摩擦网络 (EVER-MORe-OFFN)
- 批准号:
1925744 - 财政年份:2019
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
相似海外基金
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
- 批准号:
2346343 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Equipment: CC Campus Compute: Expansion of GPU Compute Capacity for NC State University HPC to Support Research and Education
设备:CC Campus Compute:扩展北卡罗来纳州立大学 HPC 的 GPU 计算能力以支持研究和教育
- 批准号:
2321565 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Cheminformatics Subgraph Matching via GPU Compute
通过 GPU 计算进行化学信息学子图匹配
- 批准号:
2751042 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Studentship
CC* Compute: The MSU Data Machine - a high-memory, GPU-enabled compute cluster for data-intensive and AI applications
CC* 计算:MSU 数据机 - 一个高内存、支持 GPU 的计算集群,适用于数据密集型和人工智能应用程序
- 批准号:
2200792 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CC* Compute: Augmenting a 2,560-core EPYC2 Computational Cluster with GPUs for AI, Machine Learning, and other GPU-Accelerated HPC Applications
CC* 计算:使用 GPU 增强 2,560 核 EPYC2 计算集群,用于人工智能、机器学习和其他 GPU 加速的 HPC 应用
- 批准号:
2201497 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CC* Compute: GPU-based Computation and Data Enabled Research and Education (G-CoDERE) at PSU
CC* 计算:PSU 基于 GPU 的计算和数据支持的研究和教育 (G-CoDERE)
- 批准号:
2019216 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CC* Compute: GPU Infrastructure to Explore New Algorithmic & AI Methods in Data-Driven Science and Engineering at Tufts University
CC* 计算:探索新算法的 GPU 基础设施
- 批准号:
2018149 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CC* Compute: A High Performance GPU Cluster at Syracuse University
CC* 计算:雪城大学的高性能 GPU 集群
- 批准号:
2018822 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CC* Compute: Deep Bayou: Accelerating Scientific Discoveries with A GPU Cluster
CC* 计算:Deep Bayou:利用 GPU 集群加速科学发现
- 批准号:
2020446 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant