Development of a Neural Network Potential for Metal-Organic Frameworks

金属有机框架神经网络潜力的开发

基本信息

项目摘要

A lot of progress has been made in recent years in the development of machine learning (ML) potentials for atomistic simulations. An important class of ML potentials employs artificial neural networks to construct the functional relation between the atomic configuration and the potential energy. To date, neural network potentials (NNP) have been reported for a wide range of materials. They are trained to data from electronic structure calculations and then allow to perform simulations of large systems with the efficiency of simple empirical potentials while maintaining the accuracy of the underlying reference method. In this project the applicability and accuracy of high-dimensional NNPs for organic-inorganic hybrid materials will be investigated, which are very challenging for conventional potentials. For this purpose metal-organic-frameworks (MOFs) will be used as a prototypical and technologically important class of hybrid materials. MOFs consist of metal-oxo clusters that are connected by organic linker molecules to form very stable porous three-dimensional crystalline materials. A particular focus will be on the validation of the NNP that should be applicable to a wide range of MOFs, with implications for the development of potentials for general hybrid systems containing organic and inorganic subsystems.
近年来,在原子模拟的机器学习(ML)潜力的开发方面取得了很大进展。一类重要的ML势采用人工神经网络来构造原子构型与势能之间的函数关系。迄今为止,神经网络电位(NNP)已被广泛报道的材料。它们经过电子结构计算数据的训练,然后允许以简单经验势的效率对大型系统进行模拟,同时保持基础参考方法的准确性。在这个项目中,高维NNPs的适用性和准确性的有机-无机杂化材料将被调查,这是非常具有挑战性的传统潜力。为此目的,金属有机框架(MOFs)将被用作一种典型的和技术上重要的杂化材料。MOFs由金属-氧簇组成,这些金属-氧簇通过有机连接分子连接以形成非常稳定的多孔三维晶体材料。一个特别的重点将是验证的NNP,应适用于范围广泛的MOFs,与发展的潜力一般混合系统包含有机和无机子系统的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jörg Behler其他文献

Professor Dr. Jörg Behler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jörg Behler', 18)}}的其他基金

Development of a generally applicable machine learning potential with accurate long-range electrostatic interactions
开发具有精确的远程静电相互作用的普遍适用的机器学习潜力
  • 批准号:
    411538199
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular Dynamics Simulations of Complex Systems Using High-Dimensional Neural Networks
使用高维神经网络对复杂系统进行分子动力学模拟
  • 批准号:
    329898176
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Theoretical Investigation of the Structural Properties of Copper Clusters at Zinc Oxide
氧化锌中铜簇结构性质的理论研究
  • 批准号:
    289217282
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular Dynamics Simulations of Complex Systems Using High-Dimensional Neural Network Potentials
使用高维神经网络势的复杂系统的分子动力学模拟
  • 批准号:
    251138345
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Molecular Dynamics Studies of the Water-Copper Interface Using Neural Network Potentials
使用神经网络势的水-铜界面的分子动力学研究
  • 批准号:
    225657524
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Enantioselective Processes at Surfaces Studied by High-Dimensional Neural Network Potentials
高维神经网络势研究表面的对映选择性过程
  • 批准号:
    76899711
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Ab initio Metadynamik-Untersuchung von Phasendiagrammen kristalliner Festkörper unter extremen Bedingungen
极端条件下结晶固体相图的从头元动力学研究
  • 批准号:
    25882953
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Fourth-Generation Neural Network Potentials for Molecular Chemistry
第四代神经网络在分子化学方面的潜力
  • 批准号:
    495842446
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a neural-network-based accelerator for holography
开发基于神经网络的全息加速器
  • 批准号:
    22KK0183
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
  • 批准号:
    23H00506
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Discovering the dynamics of cloud development through the embedding space of a self-supervised neural network
通过自监督神经网络的嵌入空间发现云发展的动态
  • 批准号:
    2886013
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of Deep Learning Methods for Generating and Analyzing Neural Network Microscopy Images
用于生成和分析神经网络显微图像的深度学习方法的开发
  • 批准号:
    23KF0296
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of the precision of b-jet property measurements with neural network and precise measurement of Higgs boson deploying the developed b-jet analysis
利用神经网络开发精确的 b 射流特性测量,并利用所开发的 b 射流分析精确测量希格斯玻色子
  • 批准号:
    23KJ0400
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and Evaluation of Real-like Synthetic Construction Images to Enhance the Performances of Deep Neural Network for Construction Applications
开发和评估逼真的合成施工图像,以增强建筑应用中深度神经网络的性能
  • 批准号:
    RGPIN-2022-04429
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of 3D-Conformational Descriptors of Organic Fragments for Design of Molecular Structures using Deep Neural Network
使用深度神经网络开发用于分子结构设计的有机片段 3D 构象描述符
  • 批准号:
    22K05073
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and validation of a multi-input neural network to predict outcomes following radiation therapy of soft tissue sarcoma
开发和验证多输入神经网络来预测软组织肉瘤放射治疗后的结果
  • 批准号:
    475836
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Development and Evaluation of Real-like Synthetic Construction Images to Enhance the Performances of Deep Neural Network for Construction Applications
开发和评估逼真的合成施工图像,以增强建筑应用中深度神经网络的性能
  • 批准号:
    DGECR-2022-00503
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了