Efficient and Robust Light Transport Simulation with adaptive (Markov Chain) Monte Carlo Methods
使用自适应(马尔可夫链)蒙特卡罗方法进行高效且鲁棒的光传输模拟
基本信息
- 批准号:405788923
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physically-based light transport simulation is an integral part of photorealistic rendering, which in turn is a key problem in computer graphics. Great advances in research with regard to variance reduction, robust and efficient transport path construction, and good stratification led to an almost exclusive use of Monte Carlo and Markov Chain Monte Carlo-methods (MC- and MCMC-methods) for the simulation. However, even modern simulation methods can struggle, or are simply not efficient enough, with more challenging transport problems. The consequences are unpredictably long computation times or disturbing residual errors or artifacts in the images (e.g., visible as temporal instabilities in animations).In this project, we will leverage the understanding of the integration problem, which has evolved along with the aforementioned advances, to explore the potential of more powerful MC- and MCMC-methods which are up-to-now unexplored in computer graphics. On the one hand, we will consider Multi-Level Monte Carlo-methods, which enable a flexible splitting of the integration problem into independent estimators, and we will research how clever splittings can be found, how the total variance can be minimized (e.g. by flexible resource allocation or integration schemes), and how hierarchical integration can be best put into practice. On the other hand, we will introduce regional-adaptive Markov Chain Monte Carlo-methods to computer graphics. Applied to light transport simulation, they enable a more flexible path mutation strategy selection and control of mutation parameters -- also depending on the state of Markov chains and with varying selection probabilities of mutations and varying parameters within a single chain. This leads to numerous interesting questions, for example, how a suitable partitioning of the path space looks like, or how one derives and ensures the properties of consistency and convergence. Also for this reasons, this project further develops a current topic in the field with regard to the new (MC)MC-methods. Recent work motivates the use of data-driven approaches to improve the efficiency of light transport simulation methods. For example, information on the transport, possibly acquired during a short preprocess-simulation, can be used to guide the construction of transport paths. Here the proposed project steps in and will conduct research on how the therefor required information can be acquired sufficiently and more reliably (e.g. through regularizing the integration problem), to what extent data needs to be stored (e.g. storing transport paths or aggregate statistics), and which data representations and data structures are well suited for storage and usage during simulation. For the above described new methods we will thereby research how data-driven splitting of the integration problem or partitioning of the path space can be achieved, or how mutations in adaptive Markov chains can be controlled in a data driven fashion.
基于物理的光传输模拟是真实感绘制的重要组成部分,而真实感绘制又是计算机图形学的一个关键问题。在方差减小、鲁棒性和高效的传输路径构建以及良好的分层方面的研究取得了巨大进展,这导致了蒙特卡罗和马尔可夫链蒙特卡罗方法(MC和MCMC方法)几乎完全用于模拟。然而,即使是现代模拟方法也可能难以解决更具挑战性的运输问题,或者效率不够。其结果是不可预测的长计算时间或图像中的干扰残留误差或伪影(例如,在这个项目中,我们将利用对集成问题的理解,这已经沿着了上述的进步,来探索更强大的MC和MCMC方法的潜力,这些方法到目前为止在计算机图形学中还没有被探索过。一方面,我们将考虑多级蒙特卡罗方法,它使集成问题灵活地分裂成独立的估计量,我们将研究如何巧妙的分裂可以找到,如何总方差可以最小化(例如,通过灵活的资源分配或集成方案),以及如何分层集成可以最好地付诸实践。另一方面,我们将区域自适应马尔可夫链蒙特卡罗方法引入计算机图形学。应用于光传输模拟,他们使一个更灵活的路径突变策略的选择和控制的突变参数-也取决于马尔可夫链的状态和不同的选择概率的突变和变化的参数在一个单一的链。这导致了许多有趣的问题,例如,如何适当划分路径空间,或者如何导出并确保一致性和收敛性。同样出于这个原因,该项目进一步发展了该领域的一个当前主题,即新的(MC)MC方法。最近的工作激励使用数据驱动的方法来提高光传输模拟方法的效率。例如,可能在短的预处理模拟期间获得的关于运输的信息可以用于指导运输路径的构建。在这里,拟议的项目步骤,并将进行研究,如何因此所需的信息可以充分和更可靠地获得(例如,通过正规化的整合问题),到什么程度的数据需要存储(例如,存储传输路径或汇总统计),以及哪些数据表示和数据结构是非常适合存储和使用在模拟过程中。对于上述新方法,我们将研究如何实现集成问题的数据驱动分裂或路径空间的划分,或者如何以数据驱动的方式控制自适应马尔可夫链中的突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Carsten Dachsbacher其他文献
Professor Dr.-Ing. Carsten Dachsbacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Carsten Dachsbacher', 18)}}的其他基金
Mollifying Realistic Image Synthesis for Time Constrained Rendering
缓解时间受限渲染的真实图像合成
- 批准号:
323377784 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Online Autotuning for Interactive Raytracing
用于交互式光线追踪的在线自动调整
- 批准号:
299215159 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Rendering and Display Algorithms for Large Stereoscopic High Dynamic Range Projections
大型立体高动态范围投影的渲染和显示算法
- 批准号:
272320741 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Visualisierung von Lichttransport in realen und synthetischen Szenen und Anwendung im Beleuchtungsdesign in Architektur und Filmproduktionen
真实和合成场景中光传输的可视化以及在建筑和电影制作中的照明设计中的应用
- 批准号:
208183491 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Spectral Optimization of kD-Sample Points for Integrands in Realtime-Path Tracing
实时路径追踪中被积函数 kD 样本点的谱优化
- 批准号:
462649663 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Rendering procedural textures for huge digital worlds
为巨大的数字世界渲染程序纹理
- 批准号:
431478017 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant