Rendering procedural textures for huge digital worlds

为巨大的数字世界渲染程序纹理

基本信息

项目摘要

The ever increasing demands on realism and detail in virtual 3D scenes lead to a tremendous amount of data. One major driving force is textures which are widely used to represent fine visual details, such as variation of material parameters across surfaces or displacements. It is common that textures are obtained from procedural models which are well suited to create stochastic textures, e.g. to mimic natural phenomena. Procedural texturing is a generative approach where textures are compactly represented by a set of functions which are evaluated to produce the final texture. In this project we build on Procedural Texture Graphs (PTGs), which represent the generative process as a graph where source nodes are mathematical functions, inner nodes are pixel processing operations and sink nodes are the final output textures.In a typical production pipeline, textures are either computed upfront which becomes extremely storage demanding, or are evaluated on-the-fly during texture accesses resulting in many redundant calculations. Our project is concerned with this quandary. We plan to treat procedural texture synthesis and photo-realistic rendering as one tightly coupled entity to make the rendering of highly detailed scenes feasible using texture synthesis on demand -- and reduce the redundant calculations by novel caching schemes accounting for all aspects of the pipeline from texture evaluation to the needs of high-quality rendering. The latter requires texture filtering, i.e. computing the weighted average of texels in a subregion of the texture determined by ray differentials. We plan to address the multitude of challenges that comes along with this approach by first deriving a novel texture filtering theory for prefiltering and antialiasing of textures created from a PTG (storing color as well as normals/displacements). The key will be newly developed caching algorithms which exploit the additional knowledge that a PTG provides, namely how a texture evolves from individual basis functions and operations.The second challenge with procedural textures is, although powerful and flexible, the creation of textures with a desired look: the construction of an appropriate graph is tedious for artists and requires in-depth knowledge of the underlying operations. Our new approach requires to add technical metadata to the PTG, which would make the construction task even more difficult. To overcome this, we want to facilitate the production of the graph by a semi-automatic approach from input exemplars, which are often given for production rendering. We will develop new algorithms to extract a set of elementary functions and combination operators from the exemplars to obtain images with similar appearance. A fully automatic tool would be neither realistic neither relevant, because artists need to control the result. To this end, we aim at a feedback loop approach: artists fix constraints while the algorithms solve sub-problems.
在虚拟3D场景中,对真实感和细节的需求不断增加,导致了大量的数据。一个主要的驱动力是纹理,它被广泛用于表示精细的视觉细节,例如材料参数在表面或位移上的变化。通常,纹理是从程序模型中获得的,这些模型非常适合创建随机纹理,例如模拟自然现象。过程纹理是一种生成方法,其中纹理由一组函数紧凑地表示,这些函数被评估以产生最终纹理。在这个项目中,我们建立了程序纹理图(PTGs),它将生成过程表示为图形,其中源节点是数学函数,内部节点是像素处理操作,sink节点是最终输出纹理。在一个典型的生产管道中,纹理要么是预先计算的,这变得非常需要存储,要么是在纹理访问期间进行动态评估,导致许多冗余计算。我们的项目与这种困境有关。我们计划将程序纹理合成和照片真实感渲染作为一个紧密耦合的实体来处理,以便根据需要使用纹理合成来渲染高度详细的场景,并通过考虑从纹理评估到高质量渲染需求的管道的各个方面的新颖缓存方案来减少冗余计算。后者需要纹理滤波,即计算由射线微分确定的纹理子区域中的纹理的加权平均值。我们计划通过首先推导一种新的纹理过滤理论来解决这种方法带来的众多挑战,该理论用于从PTG(存储颜色以及法线/位移)创建的纹理的预滤波和抗锯齿。关键将是新开发的缓存算法,它利用PTG提供的额外知识,即纹理如何从单个基函数和操作演变。程序纹理的第二个挑战是,尽管功能强大且灵活,但具有理想外观的纹理的创建:对于艺术家来说,构建适当的图形是乏味的,并且需要深入了解底层操作。我们的新方法需要向PTG添加技术元数据,这将使构建任务更加困难。为了克服这个问题,我们希望通过输入示例的半自动方法来促进图形的生成,这些示例通常用于生产渲染。我们将开发新的算法,从样本中提取一组初等函数和组合算子,以获得具有相似外观的图像。全自动工具既不现实也不相关,因为美工需要控制结果。为此,我们的目标是一种反馈循环方法:艺术家修复约束,而算法解决子问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Carsten Dachsbacher其他文献

Professor Dr.-Ing. Carsten Dachsbacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Carsten Dachsbacher', 18)}}的其他基金

Efficient and Robust Light Transport Simulation with adaptive (Markov Chain) Monte Carlo Methods
使用自适应(马尔可夫链)蒙特卡罗方法进行高效且鲁棒的光传输模拟
  • 批准号:
    405788923
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mollifying Realistic Image Synthesis for Time Constrained Rendering
缓解时间受限渲染的真实图像合成
  • 批准号:
    323377784
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Online Autotuning for Interactive Raytracing
用于交互式光线追踪的在线自动调整
  • 批准号:
    299215159
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Rendering and Display Algorithms for Large Stereoscopic High Dynamic Range Projections
大型立体高动态范围投影的渲染和显示算法
  • 批准号:
    272320741
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Visualisierung von Lichttransport in realen und synthetischen Szenen und Anwendung im Beleuchtungsdesign in Architektur und Filmproduktionen
真实和合成场景中光传输的可视化以及在建筑和电影制作中的照明设计中的应用
  • 批准号:
    208183491
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spectral Optimization of kD-Sample Points for Integrands in Realtime-Path Tracing
实时路径追踪中被积函数 kD 样本点的谱优化
  • 批准号:
    462649663
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Procedural problem generation for learning support of beginner and middle-level Go players in response to their requests
根据初级和中级围棋棋手的要求生成程序问题,为他们提供学习支持
  • 批准号:
    23K17021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Linguistic Register Analysis of Procedural Monologues in YouTube Videos
YouTube 视频中程序独白的语言语域分析
  • 批准号:
    23K00671
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Procedural Text Generation from Instructional Videos
从教学视频生成程序文本
  • 批准号:
    22KJ1666
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Tele-FootX: Virtually Supervised Tele-Exercise Platform for Accelerating Plantar Wound Healing
Tele-FootX:用于加速足底伤口愈合的虚拟监督远程锻炼平台
  • 批准号:
    10701324
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integrating eye-tracking and ECG methodologies for remote infant neurocognitive assessments in the home
整合眼动追踪和心电图方法,在家中进行远程婴儿神经认知评估
  • 批准号:
    10773680
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of the educational toolkit for the fundamentals of sound effects production and procedural sound design
开发声音效果制作和程序声音设计基础知识的教育工具包
  • 批准号:
    23K11732
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identify the cultural, procedural, and outcome measures that carry the greatest relevance for Indigenous Primary Care models
确定与土著初级保健模式最相关的文化、程序和结果措施
  • 批准号:
    499410
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
  • 批准号:
    10646631
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel models to study dorsal root ganglion neurons in knee osteoarthritis pain
研究膝骨关节炎疼痛中背根神经节神经元的新模型
  • 批准号:
    10783393
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Harvard School of Dental Medicine Collaborative Clinical Practice-based REsearch Program for DENTal Schools (H-CREDENT)
哈佛大学牙科医学院牙科学院基于临床实践的合作研究计划 (H-CREDENT)
  • 批准号:
    10754738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了