Combining Magnetic Spectroscopy and Modern Multireference Methods to Understand the Properties of Bio-Inspired and Enzymatic Multicopper Systems

结合磁谱和现代多参考方法来了解仿生和酶促多铜系统的特性

基本信息

项目摘要

Copper active sites play central biological roles, including electron transfer, dioxygen binding, activation and reduction, as well as denitrification processes. Enzymatic copper centers are extremely diverse in geometric and electronic structure, and range from mononuclear sites to dinuclear, trinuclear and tetranuclear clusters. When magnetically active Cu(II) ions are present in proximity or interact through chemical bonds, their unpaired spin moments couple leading to a rich phenomenology in terms of magnetism and spectroscopy. This is mainly probed by electron paramagnetic resonance (EPR) techniques and expressed in terms of spin Hamiltonian parameters such as exchange coupling constants, hyperfine/superhyperfine coupling interactions of metal and ligand sites, and local/global zero-field splitting parameters. If multiple Cu(II) centers are involved, as in the trinuclear site of multicopper oxidases and the tetranuclear CuZ site of N2O reductase, the magnetic interactions and associated spectroscopic behavior can become complex so that a unique assignment of electronic structure may require quantum chemical mapping of structural and spectroscopic features. Single-determinant density functional theory (DFT) methods that are widely applicable often struggle to correctly describe the magnetic interaction between Cu(II) sites, and perform inconsistently in reproducing spindependent observables or predicting non-Heisenberg terms of the spin Hamiltonian. Multireference correlated wave function methods such as Difference-Dedicated Configuration Interaction (DDCI) are more reliable but are limited by their cost to simple, usually dinuclear systems and do not provide access to many spectroscopic observables. Such limitations can be lifted by the Density Matrix Renormalization Group (DMRG), which enables multireference calculations to be conducted with unprecedentedly large active spaces. The project involves a combined experimental and theoretical approach, where the French partners will synthesize and spectroscopically characterize biomimetic multinuclear Cu complexes, including a DFT-based description of their properties using spin-projection methods, while the German partners will develop and apply DMRG-based multireference methods on these synthetic models. A major and novel goal is to establish the applicability of DMRG and novel DMRG based techniques to the magnetism and spectroscopy of multicopper systems. The combination of synthesis, spectroscopy and theory aims to first build the basis for interpreting the electronic structure, magnetism and spectroscopy of multicopper complexes, to apply the proven theoretical methods to models of enzymatic systems in order to understand the properties and function of the bioinorganic sites themselves, and finally to inform the synthesis of improved spectroscopic, and potentially functional, analogues of the biological multicopper sites.
铜活性中心在生物学中起着重要的作用,包括电子传递、分子氧结合、活化和还原以及反硝化过程。酶的铜中心的几何和电子结构是非常多样化的,范围从单核网站到双核,三核和四核簇。当磁活性Cu(II)离子存在于附近或通过化学键相互作用时,它们的未成对自旋矩耦合导致在磁性和光谱方面的丰富现象。这主要是探测的电子顺磁共振(EPR)技术和表示的自旋哈密顿参数,如交换耦合常数,超精细/超超精细耦合相互作用的金属和配位体网站,和本地/全球零场分裂参数。如果涉及多个Cu(II)中心,如在多铜氧化酶的三核位点和N2 O还原酶的四核CuZ位点中,磁相互作用和相关的光谱行为可能变得复杂,使得电子结构的独特分配可能需要结构和光谱特征的量子化学映射。广泛适用的单行列式密度泛函理论(DFT)方法通常难以正确描述Cu(II)位点之间的磁相互作用,并且在再现自旋无关的可观测量或预测自旋哈密顿量的非海森堡项时表现不一致。多参考相关波函数方法,如差分专用组态相互作用(DDCI)是更可靠的,但限制了他们的成本简单,通常双核系统,并不提供许多光谱观测。这种限制可以通过密度矩阵重整化群(DMRG)来解除,它使多参考计算能够在前所未有的大活动空间中进行。该项目涉及实验和理论相结合的方法,其中法国合作伙伴将合成和光谱表征仿生多核Cu配合物,包括使用自旋投影方法对其性质进行基于DFT的描述,而德国合作伙伴将开发和应用基于DMRG的多参考方法。一个主要的和新的目标是建立DMRG和新的DMRG为基础的技术的磁性和光谱的多铜系统的适用性。合成,光谱学和理论的结合旨在首先建立解释多铜络合物的电子结构,磁性和光谱学的基础,将已证明的理论方法应用于酶系统的模型,以了解生物无机位点本身的性质和功能,最后为改进的光谱学和潜在功能的合成提供信息,生物多铜位点的类似物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Roemelt其他文献

Professor Dr. Michael Roemelt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Roemelt', 18)}}的其他基金

Studying carbon dioxide-reduction by Fe-Ni Sulfides with modern electronic structure methods:A case of multistate reactivity?
用现代电子结构方法研究铁镍硫化物还原二氧化碳:多态反应性案例?
  • 批准号:
    471174587
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Complex molecular systems studied by modern ab initio multireference methods
现代从头算多参考方法研究复杂分子系统
  • 批准号:
    394718827
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似海外基金

A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
  • 批准号:
    LE240100050
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
High field magnetic spectroscopy: an innovative characterization method
高场磁谱:一种创新的表征方法
  • 批准号:
    24K07520
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Edited Magnetic Resonance Spectroscopy of the Pediatric Brain
儿科大脑磁共振波谱编辑
  • 批准号:
    10583752
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
  • 批准号:
    2320520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
  • 批准号:
    10593377
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Revealing Particle Acceleration Mechanisms by Magnetic Energy Release with Advanced Hard X-ray Solar Imaging Spectroscopy
利用先进的硬 X 射线太阳成像光谱揭示磁能释放的粒子加速机制
  • 批准号:
    22KJ0873
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Enhanced Solid-State Nuclear Magnetic Resonance Spectroscopy of Amorphous Solid Dispersions for Pharmaceutical Sciences
用于制药科学的非晶固体分散体的增强型固态核磁共振波谱分析
  • 批准号:
    2889117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
AI-Driven Design of RF Pulses for Enhancing Nuclear Magnetic Resonance Spectroscopy and Imaging
用于增强核磁共振波谱和成像的人工智能驱动射频脉冲设计
  • 批准号:
    2304829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigating Membrane Proteins with Magnetic Resonance Spectroscopy
用磁共振波谱研究膜蛋白
  • 批准号:
    2305834
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了