Temporal Logics with Constraints

有约束的时态逻辑

基本信息

项目摘要

Temporal logics are a very popular family of logical languages, used to specify properties of abstract systems. Prominent examples of temporal logics are the linear-time logic LTL and the branching-time logics CTL and CTL*. To address the need to express more than just abstract properties, a variety of extensions of these logics have been proposed. Temporal logics with local constraints are obtained from classical temporal logics by replacing atomic propositions by constraints in a concrete domain. Such constraints allow to express relations between the data values of a finite number of variables within a bounded (local) distance of a word. In contrast to this, temporal logics with global constraints are able to express conditions on the data values in positions of a word that are a priori unbounded. To achieve this, classical logics like LTL are extended with certain syntactical tools; for instance, the logic MTL allows the annotation of the temporal modalities with time constraints, and the logic Freeze LTL uses a freeze quantifier that can be used to store the current data value into a register for later comparisons. Both kinds of temporal logics with constraints are in the focus of active research in the verification community. For the two main problems under study, the satisfiability problem and the model-checking problem, remarkable new results have recently been achieved, in some cases with the help of promising innovative techniques. The goal of our project is to explore further these and new techniques with the aim to obtain a better understanding of temporal logics with constraints in terms of decidability and computational complexity. Our work program is structured into three main threads: temporal logics with (i) local constraints, (ii) global constraints, and (iii) local and global constraints. For (i), the most important question is for which concrete domains the satisfiability problem is decidable. We plan to investigate the full potential of recently proposed methods. For concrete domains with decidable satisfiability problem, we want to study the computational complexity. In addition, we would like to investigate whether techniques from the related field of constraint satisfaction can be applied. For (ii), our focus will be on data words over the nonnegative integers and fragments of MTL and Freeze LTL, for which, in the area of real-time verification, some promising results have been achieved. In the final stage of the project, we plan to combine our studies on local and global constraints and integrate both features into (iii). Responding to recent trends in the domain of temporal logics, we also plan to address parametric versions of the logics under study.
时态逻辑是一种非常流行的逻辑语言,用于指定抽象系统的属性。时间逻辑的突出例子是线性时间逻辑LTL和分支时间逻辑CTL和CTL*。为了满足表达不仅仅是抽象属性的需要,已经提出了这些逻辑的各种扩展。带有局部约束的时态逻辑是从经典时态逻辑中通过用具体域中的约束替换原子命题而得到的。这样的约束允许表达在词的有界(局部)距离内的有限数量的变量的数据值之间的关系。与此相反,具有全局约束的时态逻辑能够在先验无界的词的位置上表达数据值的条件。 为了实现这一点,像LTL这样的经典逻辑被扩展了某些语法工具;例如,逻辑MTL允许用时间约束来注释时间模态,逻辑Freeze LTL使用冻结量词,可以用来将当前数据值存储到寄存器中以供以后比较。 这两种时态逻辑的约束是在验证界的积极研究的焦点。对于研究中的两个主要问题,可满足性问题和模型检验问题,最近取得了显着的新成果,在某些情况下,有前途的创新技术的帮助。我们的项目的目标是进一步探索这些和新的技术,目的是获得更好的理解时间逻辑的约束条件的可判定性和计算复杂性。我们的工作程序被构造成三个主要线程:时间逻辑(i)局部约束,(ii)全局约束,(iii)局部和全局约束。对于(i),最重要的问题是可满足性问题在哪些具体域上是可判定的。我们计划研究最近提出的方法的全部潜力。对于具有可判定可满足性问题的具体域,我们要研究其计算复杂性。此外,我们想调查是否可以应用约束满足相关领域的技术。对于(ii),我们的重点将是数据字的非负整数和片段的MTL和冻结LTL,其中,在该地区的实时验证,已经取得了一些可喜的成果。在项目的最后阶段,我们计划将我们对局部和全局约束的研究联合收割机结合起来,并将这两个特征整合到(iii)中。响应最近的趋势,在时域逻辑,我们还计划解决参数版本的逻辑研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Karin Quaas其他文献

Dr. Karin Quaas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Karin Quaas', 18)}}的其他基金

Verification of Weighted Timed Automata
加权时间自动机的验证
  • 批准号:
    181095210
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Temporal Logics over Finite Strings with the Prefix Order
具有前缀顺序的有限串时态逻辑
  • 批准号:
    504343613
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Border-artists: Critiquing border logics in transnational digital performance
边境艺术家:批判跨国数字表演中的边境逻辑
  • 批准号:
    2908114
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Integrating hybrid logics into concurrent program logic
将混合逻辑集成到并发程序逻辑中
  • 批准号:
    23K11051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Privileged Logics: Interrogating Foundations and Practices in Research Ethics
会议:特权逻辑:质疑研究伦理的基础和实践
  • 批准号:
    2316197
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SHF: Small: Little Tricky Logics: Misconceptions in Understanding Logics and Formal Properties
SHF:小:小棘手的逻辑:理解逻辑和形式属性的误解
  • 批准号:
    2227863
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Designing Robust Cyber-Physical Systems: Logics, Automata, Optimization, and Heuristic Methods
职业:设计鲁棒的网络物理系统:逻辑、自动机、优化和启发式方法
  • 批准号:
    2240126
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fuzzy logics for graded reasoning in applied contexts
应用上下文中分级推理的模糊逻辑
  • 批准号:
    DE220100544
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Probing co-transcriptional gene regulatory logics in human transcriptomes
探索人类转录组中的共转录基因调控逻辑
  • 批准号:
    10674900
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Strategy Logics for the Verification of Security Protocols
安全协议验证的策略逻辑
  • 批准号:
    EP/V009214/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems
合作研究:CPS:媒介:用于分析和查询感知系统的时空逻辑
  • 批准号:
    2039087
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems
合作研究:CPS:媒介:用于分析和查询感知系统的时空逻辑
  • 批准号:
    2038666
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了