Localization Transitions in Effective Random Matrix Models

有效随机矩阵模型中的定位转变

基本信息

  • 批准号:
    407999979
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to study the mathematics of quantum particles (such as electrons) in disordered media (such as doped semiconductors). The main point of focus is understanding how features like the geometry of the medium, the energy, and the strength of the disorder determine whether the material is conducting or not. For realistic models, these questions are far beyond the present mathematical state of the art so current research focuses on answering them for effective toy models.One important class of such toy models consists of matrices with random entries, whose variances decay away from the diagonal of the matrix. In this setting, the question reduces to studying the qualitative features of the eigenvectors of these random matrices. However, even for such simplified models, the current understanding is very far from complete. This project will study a subclass of these models with an imposed hierarchical structure that makes the analysis of conductance mathematically feasible. In particular, our recent works have shown that the localized (non-conducting) regime of the model can be completely understood using ideas from stochastic analysis. The principal goal of this project is to extend this work to the delocalized (conducting) regime and possibly even to more general models. Accomplishing this goal would yield a new addition to the extremely short list of toy models for which the localization transition can be proved rigorously.
该项目旨在研究无序介质(如掺杂半导体)中量子粒子(如电子)的数学。重点是了解介质的几何形状,能量和无序的强度等特征如何决定材料是否导电。对于现实模型,这些问题远远超出了目前的数学水平,因此目前的研究集中在回答有效的玩具模型。一类重要的玩具模型由随机元素的矩阵组成,其方差从矩阵的对角线开始衰减。在这种情况下,问题归结为研究这些随机矩阵的特征向量的定性特征。然而,即使是这样的简化模型,目前的理解是非常不完整的。这个项目将研究这些模型的一个子类,它具有一个强加的层次结构,使得电导的分析在数学上是可行的。特别是,我们最近的工作表明,局部(非导电)政权的模型可以完全理解使用随机分析的想法。该项目的主要目标是将这项工作扩展到离域(传导)机制,甚至可能扩展到更一般的模型。实现这一目标将产生一个新的除了极少数的玩具模型,其中本地化过渡可以证明严格。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random characteristics for Wigner matrices
维格纳矩阵的随机特征
Dynamical Approach to the TAP Equations for the Sherrington–Kirkpatrick Model
SherringtonâKirkpatrick 模型 TAP 方程的动态方法
  • DOI:
    10.1007/s10955-021-02773-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    A. Adhikari;C. Brennecke;P. von Soosten;H.-T. Yau
  • 通讯作者:
    H.-T. Yau
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Per von Soosten其他文献

Dr. Per von Soosten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Local Area Energy Plans: an effective tool for Net Zero energy transitions?
当地能源计划:净零能源转型的有效工具?
  • 批准号:
    2880594
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a Tool for Promoting Effective Transitions of Care at Hospital Discharge
开发促进出院护理有效过渡的工具
  • 批准号:
    21K10332
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supporting, Mentoring and Retaining New STEM Secondary Educators Through Major Transitions from Recruitment to Highly Effective Teacher
通过从招聘到高效教师的重大转变,支持、指导和留住新的 STEM 中学教育工作者
  • 批准号:
    2050638
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Facilitating Effective Mental Health Care Transitions for Youth: Evaluation of the Transition Support Worker Model
促进青少年有效的心理卫生保健转变:过渡支持工作者模型的评估
  • 批准号:
    401957
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Interpreting and addressing barriers impeding effective care transitions for women diagnosed with breast cancer in British Columbia
解释和解决阻碍不列颠哥伦比亚省被诊断患有乳腺癌的女性有效护理过渡的障碍
  • 批准号:
    407571
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Fellowship Programs
Broadening Participation Research Project: STEP into STEM, Investigating Successful Transitions and Effective Pathways into STEM
扩大参与研究项目:步入 STEM,调查 STEM 的成功过渡和有效途径
  • 批准号:
    1818679
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Kinetics of QCD phase transitions in effective models
有效模型中 QCD 相变动力学
  • 批准号:
    250903567
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effective Enterprise-wide Care Transitions at Discharge
出院时有效的全企业护理过渡
  • 批准号:
    8015782
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Meeting 2020 Targets: Effective Transitions for Renewable Energy & Beyond
实现 2020 年目标:可再生能源的有效转型
  • 批准号:
    DP0986201
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Mechanism of phase transitions in novel molecular conductors and transition metal oxides by constructing and analyzing effective models
通过构建和分析有效模型研究新型分子导体和过渡金属氧化物的相变机制
  • 批准号:
    21740270
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了