Analysis of fluidization and shear conditions in rotary-fluidized beds under dry and wet conditions

干湿条件下旋转流化床流化和剪切条件分析

基本信息

项目摘要

In this project, the particle dynamics in dense sheared granular flows should be described by taking the example of a rotor granulator. For this aim the gas-particle flow will be characterized by means of the Discrete Element Method (DEM) coupled with the Computational Fluid Dynamics (CFD), whereby the Magnetic Particle Tracking (MPT) will be used for the validation of the simulations. The application of DEM based simulations will provide a detailed insight in the particle dynamics, interactions and mechanical stresses (e.g. particle rotation, collision velocities, forces and frequencies). Mathematical models describing the influence of process and material parameters on the dynamics of single particles in the granulation and coating should be developed and implemented in the DEM. The central element of this project is the characterization of the influence of the presence of a liquid on the particle dynamics by experimentally validated simulations. A liquid bridge model, which contains the capillary and viscous forces acting between wetted particles during normal and oblique impacts, should be developed and implemented. The MPT method, used for the capturing of the three-dimensional movement of the particles, is a highly innovative method for characterization and monitoring of dense granular flows (for spherical and non-spherical particles). So far, the particle movement in dense granular flows could be well characterized with very expensive experimental setups, such as Positron Emission Particle Tracking (PEPT). With the MPT method, used in this project, for the first time not only particle velocities and accelerations, but also the particle rotation can be measured, which cannot be captured or sufficiently resolved with other available methods. The measuring range of the MPT has to be extended to smaller particle sizes. This will be achieved by redesign of the measurement set-up and improved shielding against external magnetic fields, including the earth's magnetic field. Marker particles with properties tailored to physical properties of bed particles should be manufactured by means of fluidized bed coating and used in the measurements. On the basis of spray granulation and coating experiments the results from the simulations and experimental studies will be evaluated with respect to the granule growth rate and the coating quality.
在本项目中,以转子造粒机为例来描述密集剪切颗粒流中的颗粒动力学。为此,将采用离散元法(DEM)与计算流体动力学(CFD)相结合的方法来表征气粒流,其中磁颗粒跟踪(MPT)将用于验证模拟。基于DEM的模拟应用将提供粒子动力学,相互作用和机械应力(例如粒子旋转,碰撞速度,力和频率)的详细见解。应该在DEM中开发和实施描述工艺和材料参数对造粒和涂层中单个颗粒动力学影响的数学模型。本项目的核心内容是通过实验验证的模拟来表征液体的存在对粒子动力学的影响。应该开发和实施一种液体桥模型,该模型包含了在正常和倾斜碰撞中作用于湿颗粒之间的毛细力和粘性力。MPT方法用于捕获颗粒的三维运动,是一种高度创新的方法,用于表征和监测致密颗粒流(用于球形和非球形颗粒)。到目前为止,密集颗粒流中的颗粒运动可以通过非常昂贵的实验装置来很好地表征,例如正电子发射粒子跟踪(PEPT)。本项目中使用的MPT方法不仅可以测量粒子的速度和加速度,而且还可以测量粒子的旋转,这是其他可用方法无法捕获或充分解决的问题。MPT的测量范围必须扩展到更小的颗粒尺寸。这将通过重新设计测量装置和改进对外部磁场(包括地球磁场)的屏蔽来实现。具有与床层颗粒物理特性相适应的标记颗粒应通过流化床涂层制造并用于测量。在喷雾造粒和涂层实验的基础上,对模拟和实验研究的结果进行了颗粒生长速度和涂层质量的评价。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Sergiy Antonyuk其他文献

Professor Dr.-Ing. Sergiy Antonyuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Sergiy Antonyuk', 18)}}的其他基金

Mechanisms of indoor aerosol spread considering particle interactions and drying kinetics
考虑颗粒相互作用和干燥动力学的室内气溶胶传播机制
  • 批准号:
    469156894
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spreading of granular pastes: from the particle to end use properties
颗粒膏体的铺展:从颗粒到最终使用特性
  • 批准号:
    431419392
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and numerical investigation of the flow process of high-pressure water jets and their interaction with technical component surfaces
高压水射流的流动过程及其与技术部件表面相互作用的实验和数值研究
  • 批准号:
    283813424
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanisms of the spheronization process for the formulation of spherical granules
球形颗粒制剂的滚圆过程机理
  • 批准号:
    244752778
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Characterization of shape and state of agglomeration of disperse systems by a 3D Light Scattering Sensor
通过 3D 光散射传感器表征分散系统团聚的形状和状态
  • 批准号:
    220606072
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multidimensional fractionation of finely dispersed particles using cross-flow filtration with superimposed electric field
使用叠加电场错流过滤对细分散颗粒进行多维分级
  • 批准号:
    382065508
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hetero-aggregation of fine particles in supersonic flow for the tailor-made surface coating
超音速流中细颗粒的异质聚集,用于定制表面涂层
  • 批准号:
    462536406
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Description of biomechanical properties of spheroids from human cells
人体细胞球体生物力学特性的描述
  • 批准号:
    516192047
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Autonomous and self-adapting, high-resolution 3D additive manufacturing by high energy impacts of fine particles
通过细颗粒的高能冲击实现自主自适应高分辨率 3D 增材制造
  • 批准号:
    504954383
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Conference: Fluidization XVII Conference Support
会议:流化 XVII 会议支持
  • 批准号:
    2315967
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of electrostatic charging in various gas-solid processes including fluidization and pnumatic conveying
研究各种气固过程(包括流化和气力输送)中的静电充电
  • 批准号:
    RGPIN-2018-05266
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Regolith vibro-fluidization in space environments
空间环境中的风化层振动流化
  • 批准号:
    2738565
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fluidization and Spouting and Application to Biomass Processing and Hydrogen Production
流态化和喷动及其在生物质加工和制氢中的应用
  • 批准号:
    RGPIN-2019-03906
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Innovative Fluidization Technologies for Green Processes
绿色工艺的创新流化技术
  • 批准号:
    RGPIN-2020-04827
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Wrapping up 50 years of fluidization and multiphase system fundamental and applied research
总结 50 年流态化和多相系统基础和应用研究
  • 批准号:
    RGPIN-2017-03791
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of electrostatic charging in various gas-solid processes including fluidization and pnumatic conveying
研究各种气固过程(包括流化和气力输送)中的静电充电
  • 批准号:
    RGPIN-2018-05266
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fluidization and Spouting and Application to Biomass Processing and Hydrogen Production
流态化和喷动及其在生物质加工和制氢中的应用
  • 批准号:
    RGPIN-2019-03906
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Innovative Fluidization Technologies for Green Processes
绿色工艺的创新流化技术
  • 批准号:
    RGPIN-2020-04827
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Innovative Fluidization Technologies for Green Processes
绿色工艺的创新流化技术
  • 批准号:
    RGPIN-2020-04827
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了