Theoretical studies of bond rupture and stability of molecular junctions
键断裂和分子连接稳定性的理论研究
基本信息
- 批准号:414167852
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current-induced rupture of chemical bonds is a major concern when single molecules are being considered as electronic components in nano-scale devices. The most widely studied architecture in this context is a molecular junction, where a single molecule is bound to metal or semiconductor electrodes. Molecular junctions represent a unique architecture to investigate molecules in a distinct nonequilibrium situation and, in a broader context, to study basic mechanisms of charge and energy transport in a many-body quantum system at the nanoscale. The objective of this project is to investigate current-induced bond rupture processes in molecular junctions, caused by coupling of the transport electrons to the vibrations of the molecule, and their implications for the stability of the junctions. To this end, the theory and methodology of vibrationally-coupled electron transport in molecular junctions will be extended to incorporate dissociative nuclear potentials. Specifically, the hierarchical quantum master equation method will be adapted for this purpose, which provides a very accurate, in principle numerically exact framework to study charge transport in molecular junctions at a fully quantum mechanical level including nonperturbative and non-Markovian effects. The extended methodology will be used to investigate the fundamental mechanisms of current-induced bond rupture in molecular junctions considering models ranging from the adiabatic to the nonadiabatic transport regime, including nonresonant and resonant transport scenarios as well as destructive and nondestructive dissociation. The methodology, to be developed in this project, will provide important benchmarks to validate more approximate methods and can also build a basis towards future applications to study current-catalyzed chemical reactions.
当单分子被认为是纳米器件中的电子元件时,电流诱导的化学键断裂是一个主要问题。在这种背景下,研究最广泛的结构是分子结,其中单个分子结合到金属或半导体电极上。分子结代表着一种独特的体系结构,可以在不同的非平衡状态下研究分子,在更广泛的背景下,在纳米尺度上研究多体量子系统中电荷和能量传输的基本机制。这个项目的目的是研究分子结中电流诱导的键断裂过程,这是由传输电子与分子振动的耦合引起的,以及它们对结稳定性的影响。为此,分子结中振动耦合电子输运的理论和方法将扩展到包括解离核势。具体地说,分层量子主方程方法将被用于这一目的,它提供了一个非常准确的、原则上精确的数值框架,以在完全量子力学水平上研究分子结中的电荷输运,包括非微扰和非马尔可夫效应。扩展的方法将被用来研究分子结中电流诱导键断裂的基本机制,考虑从绝热到非绝热输运的各种模型,包括非共振和共振输运场景以及破坏性和非破坏性解离。将在本项目中开发的方法学将为验证更接近的方法提供重要的基准,并也可以为未来应用于研究电流催化化学反应奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Thoss其他文献
Professor Dr. Michael Thoss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Thoss', 18)}}的其他基金
Theoretical studies of quantum transport in molecular junctions using the density matrix hierarchy method: Nonadiabatic effects, anharmonic vibrations, and current fluctuations
使用密度矩阵层次法对分子结中的量子输运进行理论研究:非绝热效应、非简谐振动和电流涨落
- 批准号:
317069726 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Nonequilibrium Charge Transport in Molecular Nanostructures: Theory and Applications
分子纳米结构中的非平衡电荷传输:理论与应用
- 批准号:
250586750 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Quantendynamik von Protontransferreaktionen in der kondensierten Phase
凝聚相质子转移反应的量子动力学
- 批准号:
31189284 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Theoretische Untersuchungen zu ultraschnellen photoinduzierten Elektrontransfer-Prozessen an Farbstoff-Halbleiter-Grenzflächen
染料-半导体界面超快光致电子转移过程的理论研究
- 批准号:
5397507 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Charge Transport in Nanostructures: Current-Induced Forces and Electronic Friction
纳米结构中的电荷传输:电流感应力和电子摩擦
- 批准号:
450047330 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Theoretical Investigation of Intramolecular Singlet Fission
分子内单线态裂变的理论研究
- 批准号:
310618267 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
9910613 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
10341163 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Theoretical Studies of Low Dimensional Quantum Magnets with Spatial Structures
具有空间结构的低维量子磁体的理论研究
- 批准号:
14540350 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Bacterial Ribosome Antagonists
细菌核糖体拮抗剂的理论研究
- 批准号:
6403809 - 财政年份:2001
- 资助金额:
-- - 项目类别:
CAREER: Theoretical Studies of Bond-Breaking, Diradicals, and Nondynamical Correlation
职业:断键、双自由基和非动力学相关的理论研究
- 批准号:
0094088 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
EXPERIMENTAL AND THEORETICAL STUDIES OF HYDROGEN BONDING
氢键的实验和理论研究
- 批准号:
6225383 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Synthetic and Theoretical Studies of Silicon-Silicon Triple Bond Species
硅-硅三键物质的合成与理论研究
- 批准号:
13640523 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Bacterial Ribosome Antagonists
细菌核糖体拮抗剂的理论研究
- 批准号:
6525398 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Theoretical Studies on Controlling of Chemical Reactions Catalyzod by Transidon Metal Complexes
Transidon金属配合物催化化学反应控制的理论研究
- 批准号:
11166226 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (A)