Simultaneous Estimation of Noise Level and Solution Smoothness for Ill-Posed Problems

同时估计不适定问题的噪声水平和解决方案平滑度

基本信息

  • 批准号:
    416552794
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In inverse problems, the task is to determine a cause from observed effects. The solution of such problems is characterized by sensitivity with respect to the data. The class of regularization methods addresses this difficulty by solving an auxilliary problem close to the original one, where "closeness" is controlled by a so-called regularization parameter. The choice of this parameter determines the quality of the obtained reconstructions. The noise level, i.e. an estimate of the size of the measurement noise the data inevitably contains, plays a crucial role for its choice. The goal of regularization theory is to develop methods that choose the regularization parameter in dependance of the noise level in such a way that, in the limit of vanishing noise, the solution corresponding to noise-free data is obtained. In order to guarantee such an optimal approximation of the exact solution, additional assumptions are necessary. One possibility for this are source conditions which, in the classical formulation, require the noise-free solution to be contained in the range of a certain (preferably high) power of the forward operator. Without knowledge of either the noise level or the exponent in the source condition, a high quality of the recovered solution can not be guaranteed. In particular, the choice of the optimal regularization parameter depends on both values. For theoretical considerations, knowledge of both parameters is assumed, while in practice these are often unavailable.In this project, a method is to be developed which automatically extracts an estimate for the measurement noise and the smoothness parameter in the source condition for a given inverse problem, such that existing regularization theory can be applied to construct optimal reconstruction methods. The estimation of the source condition is based on the Kurdyka-Lojasiewicz inequality (KLI), known for example from convex analysis or the asymptotic study of partial differential equations. The link to inverse problems lies in the fact that most regularization methods can be formulated as a minimization problem and the KLI describes the behaviour of functionals around their critical points. This can be recovered using iterative methods, e.g. Landweber iteration, allowing approximation of the source condition. Estimation of the noise level can also be achieved using iterative methods such as Krylov subspace projection. The technique is based on a successive application of the forward operator during the iteration and exploiting its smoothing property.With these approaches, one can construct methods for the solution of inverse problems that do not require a priori knowledge of the parameters mentioned above to automatically and optimally adapt to a given pair of forward operator and noisy data. It is intended to generalize the techniques to Tikhonov functionals, to a Banach space setting, and to nonlinear forward operators and to implement the respective methods numerically.
在逆问题中,任务是从观察到的结果中确定原因。这些问题的解决方案的特点是对数据的敏感性。这类正则化方法通过解决一个接近原始问题的辅助问题来解决这个困难,其中“接近度”由所谓的正则化参数控制。该参数的选择决定了所获得的重建的质量。噪声水平,即对数据不可避免地包含的测量噪声大小的估计,在其选择中起着至关重要的作用。正则化理论的目标是开发根据噪声水平选择正则化参数的方法,以便在噪声消失的限制下,获得对应于无噪声数据的解决方案。为了保证精确解的这种最佳近似,需要额外的假设。一种可能性是源条件,在经典公式中,要求无噪声解包含在前向算子的某个(最好是高)幂的范围内。如果不知道源条件下的噪声水平或指数,就不能保证恢复的解的高质量。特别地,最佳正则化参数的选择取决于这两个值。从理论上考虑,这两个参数的知识是假定的,而在实践中,这些往往是unavailable.在这个项目中,将开发一种方法,自动提取估计的测量噪声和平滑参数的源条件下,对于一个给定的反问题,这样现有的正则化理论可以应用于构建最佳的重建方法。源条件的估计基于Kurdyka-Lojasiewicz不等式(KLI),例如从凸分析或偏微分方程的渐近研究中已知。与反问题的联系在于,大多数正则化方法可以被公式化为最小化问题,KLI描述了泛函在其临界点附近的行为。这可以使用迭代方法恢复,例如Landweber迭代,允许近似源条件。 噪声水平的估计也可以使用诸如Krylov子空间投影的迭代方法来实现。该技术是基于一个连续的应用程序的前向算子在迭代过程中,并利用其平滑property.With这些方法,人们可以构建方法的解决方案的反问题,不需要先验知识的参数上述自动和最佳地适应一对给定的前向算子和噪声数据。它的目的是推广的技术吉洪诺夫泛函,Banach空间设置,非线性向前运营商和实现各自的方法数值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Daniel Gerth其他文献

Dr. Daniel Gerth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Estimation of seismic noise: toward efficient seismic observation and microtremor survey
地震噪声估计:实现高效的地震观测和微震勘测
  • 批准号:
    23K03514
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realization of Minimum Volume Design of Noise Filter for Power Converters Based on Parasitic Impedance Estimation Techniques
基于寄生阻抗估计技术的功率变换器噪声滤波器最小体积设计的实现
  • 批准号:
    21K14145
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling of dynamic network based on noise information estimation: Identification of errors-in-variables models in closed-loop
基于噪声信息估计的动态网络建模:闭环变量模型误差识别
  • 批准号:
    16K18127
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A Study on Suppression of Self-Noise Propagation in Iterative Detection of Unified Channel Estimation, Synchronization, and Decoding
统一信道估计、同步和译码迭代检测中自噪声传播抑制的研究
  • 批准号:
    25420369
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blind Noise Estimation Using Signal Statistics in Random Band-Pass Domains
使用随机带通域中的信号统计进行盲噪声估计
  • 批准号:
    1319800
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MAP estimation-based noise suppression and blind source separation using single voice activity detection
使用单一语音活动检测的基于 MAP 估计的噪声抑制和盲源分离
  • 批准号:
    24500204
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimation of the number of population exposed by high level road traffic noise for a study of health risk caused by noise
估计受到高水平道路交通噪声影响的人口数量,以研究噪声引起的健康风险
  • 批准号:
    24560715
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimation of noise in the multispectral camera and recovery of spectral reflectance
多光谱相机中的噪声估计和光谱反射率的恢复
  • 批准号:
    23500235
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel estimation method for spatially varying noise levels in MR images
开发一种新的 MR 图像空间变化噪声水平估计方法
  • 批准号:
    23791422
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ROBUST ESTIMATION OF REGIONAL PULMONARY PARAMETERS IN PRESENCE OF NOISE
存在噪声时区域肺参数的稳健估计
  • 批准号:
    7955345
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了