Influence of geometry, rheology and compliance on the transition to turbulence in pulsatile pipe flow
几何形状、流变性和柔顺性对脉动管流湍流过渡的影响
基本信息
- 批准号:418015548
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The presence of disturbed flow patterns in the cardiovascular system is thought to trigger diseases. Therefore, in recent years there has been an increasing interest on understanding under what conditions instabilities and turbulence transition occur in the cardiovascular system. Apart from the inherent difficulties of studying transition even in canonical systems, cardiovascular flow includes several additional complexities. Blood flow in the large arteries is pulsatile, the arteries are flexible and exhibit complex geometries, and blood itself is a non-Newtonian fluid. Some of these features have been investigated in the literature, usually separately and in simple setups. The effect of the pulsation has been mostly studied in straight and smooth rigid pipes. Even in this canonical system, transition is greatly affected by the pulsation. Depending on the flow parameters, frequency and shape of the pulsation, the flow can be highly susceptible to the sudden appearance of turbulence during certain phases of the pulsation. This is even more so for flows driven with physiological waveforms, suggesting that turbulence could be more widespread in the cardiovascular system than what was previously thought. The influence of flexible walls and non-Newtonian fluids on pulsatile pipe flow has received little attention in the literature. While both compliance and e.g., shear-thinning rheology usually delay turbulence transition in steady pipe flow, in the pulsatile case their effects remain largely unknown. The goal of this project is to extend the knowledge gained on turbulence transition in pulsatile pipe flows in rigid pipes, and systematically study one additional feature of cardiovascular flow. Three different problems are considered. Firstly, pulsatile flow in straight pipes with flexible walls. Secondly, pulsatile flow of complex fluids in rigid pipes. Thirdly, pulsatile flow in simple geometries which resemble certain sections of the human aorta. The focus will be on determining if each new feature affects the critical mechanism identified for the simple case, or if it even introduces new critical paths to turbulence. In order to do so we will develop numerical tools to perform transient growth analyses, and adapt pre-existing software to perform direct numerical simulations. Direct comparisons to laboratory experiments within the research unit will be performed. The ultimate, long-term goal is to define a complete roadmap to turbulence in the cardiovascular system and model it in a simple way using the experimental and numerical results.
心血管系统中紊乱的血流模式被认为会引发疾病。因此,近年来人们对了解心血管系统在什么条件下发生不稳定性和湍流转变越来越感兴趣。除了在规范系统中研究转变的固有困难外,心血管流动还包括一些额外的复杂性。大动脉中的血流是搏动的,动脉是灵活的,具有复杂的几何形状,而血液本身是一种非牛顿流体。这些特征中的一些已经在文献中进行了研究,通常是单独的和简单的设置。脉动效应的研究主要集中在直、光滑刚性管道中。即使在这个正则系统中,跃迁也受到脉动的很大影响。根据流动参数、脉动频率和形状的不同,在脉动的某些阶段,流动非常容易受到突然出现湍流的影响。对于由生理波形驱动的流动来说更是如此,这表明湍流在心血管系统中的分布可能比之前认为的要广泛。柔性管壁和非牛顿流体对脉动管道流动的影响在文献中很少得到关注。虽然在稳定的管道流动中,柔性和剪切变薄流变学通常会延迟湍流转变,但在脉动情况下,它们的影响在很大程度上仍然未知。本项目的目标是扩展在刚性管道中脉动管流的湍流转捩方面所获得的知识,并系统地研究心血管流的另一个特征。这里考虑了三个不同的问题。首先,柔性管壁直管中的脉动流动。第二,复杂流体在刚性管道中的脉动流动。第三,简单几何形状的脉动流,类似于人类主动脉的某些部分。重点将是确定每个新特征是否会影响为简单情况确定的关键机制,或者它是否甚至引入了新的湍流关键路径。为了做到这一点,我们将开发数值工具来执行瞬态增长分析,并调整已有的软件来执行直接的数值模拟。将与研究单位内的实验室实验进行直接比较。最终的长期目标是定义心血管系统中湍流的完整路线图,并使用实验和数值结果以简单的方式对其进行建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marc Avila Canellas其他文献
Professor Dr. Marc Avila Canellas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marc Avila Canellas', 18)}}的其他基金
CFD modelling of indoor aerosol transport based on experimental Lagrangian particle tracking measurements to infer airborne SARS-CoV-2 transmission risk
基于实验性拉格朗日粒子跟踪测量的室内气溶胶输送 CFD 建模,以推断空气中 SARS-CoV-2 的传播风险
- 批准号:
469077966 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Coherent superstructures in turbulent pipe and Taylor-Couette flows
湍流管和 Taylor-Couette 流中的相干上部结构
- 批准号:
316065285 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Dynamics and transport of magnetorotational instabilities in Taylor--Couette flows
泰勒-库埃特流中磁旋转不稳定性的动力学和输运
- 批准号:
230979418 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Transport and pattern formation in pipe flow: theory / simulation
管流中的传输和模式形成:理论/模拟
- 批准号:
154133604 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Emergence of small-scale mixing in a T-mixer
T 型混合机中小规模混合的出现
- 批准号:
511099203 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elastic turbulence in micro canopy flows, effects of rheology and geometry
微冠层流动中的弹性湍流、流变学和几何形状的影响
- 批准号:
23K19103 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
- 批准号:
10722614 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrative biophysical modeling for collective tissue mechanics
集体组织力学的综合生物物理建模
- 批准号:
10711311 - 财政年份:2023
- 资助金额:
-- - 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:
10644759 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Microfluidic Apheresis to Isolate Circulating Tumor Clusters
微流体血浆分离术分离循环肿瘤簇
- 批准号:
10380192 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Microfluidic Apheresis to Isolate Circulating Tumor Clusters
微流体血浆分离术分离循环肿瘤簇
- 批准号:
10551311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
- 批准号:
10688753 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
- 批准号:
10279068 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Acoustically-driven optical-interferometric microscope for cell characterization
用于细胞表征的声学驱动光学干涉显微镜
- 批准号:
10322456 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Injectable Hydrogels to Deliver Gene Therapy for Myocardial Infarct
可注射水凝胶为心肌梗塞提供基因治疗
- 批准号:
10163255 - 财政年份:2020
- 资助金额:
-- - 项目类别: