Kinetic Field Theory: Second-order perturbation theory
动场论:二阶微扰理论
基本信息
- 批准号:418152809
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Astoundingly successful as it is, the cosmological standard model leaves us with two difficult and fundamentally important puzzles, viz. the dark matter and the dark energy, whose origin, composition, and place in the framework of physics are enigmatic. Large cosmological surveys are being and are about to be undertaken with the major goals of mapping and quantifying the dark-matter distribution and finding out about a possible evolution of the dark-energy density with time. Precise cosmological inference from these surveys hinges on the depth and precision of our understanding of the late-time, non-linear evolution of cosmic structures. While numerical simulations have returned a wealth of impressive and important results, calculating higher-order statistical properties of large-scale cosmic structures at late times is still a forbiddingly time-consuming task.Recently, we have developed a novel analytic approach to non-linear cosmic structure formation, based on a non-equilibrium kinetic field theory (KFT). This theory has several important advantages compared to more conventional approaches. In particular, it operates on the microscopic degrees of freedom of classical particles in phase space. Since the Hamiltonian flow in phase space is bijective and diffeomorphic, the notorious shell-crossing problem is absent from our approach. In its present form, the theory is free of adjustable parameters. We have shown in earlier work that even first-order perturbation theory applied to KFT reproduces the non-linear power spectrum of cosmic density fluctuations very well to wave numbers of k ~ 10 h/Mpc at the present cosmic epoch. We could further show how the central mathematical object of KFT, its generating functional, can be fully factorized into terms of a standard form.Based on this factorization, a diagrammatic approach to perturbation theory developed therefrom, and a first version of a symbolic computer code for constructing these diagrams, we propose here to calculate the second-order perturbation terms for the non-linear power spectrum of cosmic density fluctuations. Main challenges will be the reliable and fast numerical integration of the generic expressions appearing in the factorization of the generating functional, and the calculation of the one- and two-loop integrals appearing in the perturbation series. The essential goals of the proposed research are to finalize and test our symbolic computer code for perturbation diagrams, to supply it with a code for numerical integration of perturbation terms, and to evaluate, analyze and compare the contributions of these terms to the non-linearly evolved cosmic power spectrum. Based on the quality of the first-order perturbation theory in KFT, we are confident that we can analytically calculate accurate non-linear power spectra reaching wave numbers of k ~ 20-50 h/Mpc at the present epoch.
宇宙学标准模型令人惊讶地成功,这使我们遇到了两个困难且根本重要的难题,即。暗物质和暗能量,其起源,组成和物理框架中的位置是神秘的。大规模的宇宙学调查正在进行,即将以绘制和量化黑性分布的主要目标进行,并随着时间的推移发现黑暗能量密度的演变。这些调查的精确宇宙学推断取决于我们对宇宙结构的晚期,非线性演变的深度和精度。尽管数值模拟返回了许多令人印象深刻且重要的结果,但在后期计算大规模宇宙结构的高阶统计特性仍然是一项令人难以置信的耗时的任务。实际上,我们已经基于非平衡性Kinetic Field Theemens(Kft)开发了一种新型的分析方法,以针对非线性宇宙结构形成形成。与更传统的方法相比,该理论具有几个重要的优势。特别是,它在相空间中经典颗粒的显微镜自由度下运行。由于相位空间中的哈密顿流量是射精和差异性的,因此我们的方法中没有臭名昭著的壳横断问题。以目前的形式,该理论没有可调参数。我们在较早的工作中表明,即使是一阶扰动理论也适用于KFT,在当前宇宙时期,宇宙密度波动的非线性功率谱也非常好,以k〜10 h/mpc的波数。 We could further show how the central mathematical object of KFT, its generating functional, can be fully factorized into terms of a standard form.Based on this factorization, a diagrammatic approach to perturbation theory developed therefrom, and a first version of a symbolic computer code for constructing these diagrams, we propose here to calculate the second-order perturbation terms for the non-linear power spectrum of cosmic density fluctuations.主要挑战将是生成功能分解中出现的通用表达式的可靠,快速的数值集成,以及在扰动序列中出现的一环积分和两环积分的计算。拟议研究的基本目标是最终确定和测试我们的符号计算机代码的扰动图,为其提供扰动项的数值整合的代码,并评估,分析和比较这些术语对非线性演变的宇宙功率谱的贡献。基于KFT中一阶扰动理论的质量,我们有信心在当前时期分析计算准确的非线性功率谱,以达到k〜20-50 h/mpc的波数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Matthias Bartelmann其他文献
Professor Dr. Matthias Bartelmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Matthias Bartelmann', 18)}}的其他基金
Developing galaxy-cluster potentials into a cosmological diagnostic
将星系团势发展为宇宙学诊断
- 批准号:
346672789 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Joint, parameter-free reconstruction of the mass distribution in galaxy clusters from all available data sets
根据所有可用数据集联合、无参数重建星系团中的质量分布
- 批准号:
241898342 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Perturbations and observables in inhomogeneous cosmologies
非均匀宇宙学中的扰动和可观测量
- 批准号:
225630247 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Detailed analysis of a large, dedicated sample of HST clusters
HST 簇的大型专用样本的详细分析
- 批准号:
182811170 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Optimal filtering of three-dimensional, weak-lensing data
三维弱透镜数据的优化过滤
- 批准号:
195252990 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Gravitational flexion, its measurement and its application to galaxy clusters
引力弯曲、测量及其在星系团中的应用
- 批准号:
179826617 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Automatic detection of gravitational arcs in wide-area survey data, comparison of the observed and the theoretically expected arc abundance
自动检测广域测量数据中的引力弧,比较观测到的引力弧丰度与理论预期的引力弧丰度
- 批准号:
125319829 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Statistics of structures in the gravitational potential - a possible way to constrain halo populations without reference to mass
引力势结构的统计——一种在不参考质量的情况下约束晕圈群体的可能方法
- 批准号:
106639007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Detection and characterisation of dark-matter halos by gravitational shear and flexion; constraints on the non-linear cosmic structure growth
通过引力剪切和弯曲检测和表征暗物质晕;
- 批准号:
42389529 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Effects of gas dynamics on gravitational lensing by galaxy clusters; determination of physical cluster properties from analyses of lensing effects and the cluster gas
气体动力学对星系团引力透镜效应的影响;
- 批准号:
5449526 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
基于MRE支座的软土场地结构智能隔震理论与方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于MRE支座的软土场地结构智能隔震理论与方法研究
- 批准号:52178295
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
非平衡活性物质系统的势流场地貌理论
- 批准号:11905222
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
跨断层近场地震下高速铁路桥梁结构安全理论研究
- 批准号:
- 批准年份:2019
- 资助金额:231 万元
- 项目类别:联合基金项目
河谷场地地震波传播理论及散射规律研究
- 批准号:51479050
- 批准年份:2014
- 资助金额:84.0 万元
- 项目类别:面上项目
相似海外基金
Mean-Field Limits of Quantum Many-Body Dynamics and Free Boundaries in Kinetic Theory
量子多体动力学的平均场极限和运动理论中的自由边界
- 批准号:
1464869 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Study of unsteady heat and mass transfer at the strong non-equilibrium interface ugin mean-field kinetic theory
强非平衡界面非稳态传热传质研究用平均场动力学理论
- 批准号:
26630043 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on Transport phenomena at supercritical mixure interface by moelcular velocity distribution function and mean field kinetic theory
用分子速度分布函数和平均场动力学理论研究超临界混合物界面的输运现象
- 批准号:
23656122 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Theory of Kinetic Alfven Waves on Auroral Field Lines
极光场线上的动力学阿尔芬波理论
- 批准号:
0903829 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Theory of Kinetic Alfven Waves on Auroral Field Lines
极光场线上的动力学阿尔芬波理论
- 批准号:
0613473 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant