A computational psychiatric approach to understanding category representation in autism spectrum disorder

理解自闭症谱系障碍类别表征的计算精神病学方法

基本信息

项目摘要

Categorization is a vital cognitive skill that allows us to structure the world, transfer previously acquired knowledge to new situations and interact quickly with the environment. To decide whether a stimulus belongs to a given category, the item can be either compared to stored category exemplars or to the abstract average of the category (the prototype). Importantly, individuals have to choose flexibly between the two strategies, as the optimal representational strategy is dependent on the particular categorization problem, Individuals with autism spectrum disorder (ASD) tend to focus on details and to pay less attention to contextual information. Despite intact performance in many categorization tasks, early evidence suggests that the detail-focused style leads to specific difficulties in the abstraction of prototypes, which could be a precursor to social difficulties. However, it is unclear whether these difficulties are compensated by a bias towards exemplar-based category representation.The planned project will employ a highly sensitive, well-established approach to differentiate exemplar- and prototype-based category representation by the combination of cognitive modeling with multivariate neuroimaging analyses. This approach will enable to disentangle categorization strategies on the individual level. Hierarchical multiple regression analyses will be used to investigate whether formal ASD diagnosis and the degree of autistic traits make independent contributions to the choice of categorization style and whether these effects are robust against group differences in depression and anxiety. Results will be related to performance in a social category learning task and clinical measures (i.e. social functioning, repetitive behavior/restricted interests, quality of life).The efficient acquisition of category knowledge is also facilitated by top-down influences on sensory areas, such that prior category knowledge is used to guide perceptual processing. In individuals with ASD and neurotypical persons high in autistic traits, sensory processing is often less modulated by prior experience in (‘hypo-prior’-theory). Indirect evidence suggests that this phenomenon extends to category learning and could explain why category knowledge acquisition in ASD is sometimes slowed down. The planned project will therefore employ a well-established paradigm suitable to uncover the modulation of sensory category representation of dot-patterns by top-down influences of abstract category knowledge. Results will be related to measures of hypo-priors in a social category learning task and clinical measures.The proposed project seeks to advance the understanding of basic cognitive processes in ASD and how they related to classical ASD symptoms. Potential clinical implications include the identification of neuronal biomarkers for ASD diagnosis and suggestions for adaptations of (social skills) trainings for individuals with ASD.
分类是一种重要的认知技能,它使我们能够构建世界,将以前获得的知识转移到新的情况中,并与环境快速互动。为了决定一个刺激是否属于一个给定的类别,可以将该项目与存储的类别样本或类别的抽象平均值(原型)进行比较。重要的是,个体必须在这两种策略之间灵活选择,因为最佳表征策略取决于特定的分类问题。自闭症谱系障碍(ASD)个体倾向于关注细节,而不太关注上下文信息。尽管在许多分类任务中表现完好,但早期的证据表明,注重细节的风格会导致原型抽象的具体困难,这可能是社交困难的前兆。然而,目前还不清楚这些困难是否被补偿的偏见,以范例为基础的类别representation.The计划项目将采用高度敏感,完善的方法来区分范例和原型为基础的类别representation的组合的认知建模与多元神经影像分析。这种方法将有助于在个体层面上理清分类策略。分层多元回归分析将被用来调查是否正式的ASD诊断和自闭症特征的程度作出独立的贡献的分类风格的选择,以及这些效果是否强大的抑郁和焦虑的群体差异。结果将与社会类别学习任务和临床测量(即社会功能,重复行为/限制的兴趣,生活质量)的性能。类别知识的有效获取也促进了自上而下的影响,对感觉区,这样,以前的类别知识是用来指导知觉处理。在ASD患者和具有高自闭症特征的神经典型者中,感觉处理通常较少受到先前经验的调节(“次优先”理论)。间接证据表明,这一现象延伸到类别学习,并可以解释为什么类别知识的获取在ASD有时会放缓。因此,计划中的项目将采用一个成熟的范式,适合揭示抽象类别知识自上而下的影响对点模式的感官类别表征的调节。结果将与社会类别学习任务和临床measures.The拟议的项目旨在促进ASD的基本认知过程的理解,以及它们如何与经典ASD症状的措施。潜在的临床意义包括ASD诊断的神经元生物标志物的鉴定和ASD患者(社交技能)训练适应性的建议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Janine Bayer其他文献

Dr. Janine Bayer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Cognitive mechanisms of delusion severity throughout recovery from an acute psychotic episode: a computational approach
急性精神病发作恢复过程中妄想严重程度的认知机制:一种计算方法
  • 批准号:
    10190701
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Cognitive mechanisms of delusion severity throughout recovery from an acute psychotic episode: a computational approach
急性精神病发作恢复过程中妄想严重程度的认知机制:一种计算方法
  • 批准号:
    10555230
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Cognitive mechanisms of delusion severity throughout recovery from an acute psychotic episode: a computational approach
急性精神病发作恢复过程中妄想严重程度的认知机制:一种计算方法
  • 批准号:
    10371170
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Computational nosology based on artificial intelligence and dimensional approach for psychiatric disorders
基于人工智能和维度方法的精神疾病计算疾病学
  • 批准号:
    20H00625
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Neuropathology Core
神经病理学核心
  • 批准号:
    10410384
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Neuropathology Core
神经病理学核心
  • 批准号:
    10590704
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Distributed networks underlying depression in epilepsy: a computational circuit-based approach to biomarker development
癫痫抑郁症的分布式网络:基于计算电路的生物标志物开发方法
  • 批准号:
    10238999
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
A computational genomics approach to identify roles of rare genetic variants in psychiatric disorders and gene expression
一种计算基因组学方法,用于识别罕见遗传变异在精神疾病和基因表达中的作用
  • 批准号:
    9752584
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
A computational genomics approach to identify roles of rare genetic variants in psychiatric disorders and gene expression
一种计算基因组学方法,用于识别罕见遗传变异在精神疾病和基因表达中的作用
  • 批准号:
    9975854
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Computational Discovery of Synergistic Mechanisms Responsible for Psychiatric Dis
导致精神疾病的协同机制的计算发现
  • 批准号:
    7896521
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了